steps: - name: "docker" dir: "core-model-prediction" args: [ "builds", "submit", "--tag", "gcr.io/${PROJECT_ID}/interview-ai-detector/model-prediction", ] - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" entrypoint: "bash" args: - "-c" - | _MODEL_ID=$(gcloud ai models upload \ --region="${_GCP_VERTEX_AI_REGION}" \ --container-ports=8080 \ --container-image-uri="gcr.io/${PROJECT_ID}/interview-ai-detector/model-prediction:latest" \ --container-predict-route="/predict" \ --container-health-route="/health" \ --display-name="interview-ai-detector-model" \ --format="value(model)") echo "_MODEL_ID=${_MODEL_ID}" - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" entrypoint: "bash" args: - "-c" - | _ENDPOINT_ID=$(gcloud ai endpoints create \ --region="${_GCP_VERTEX_AI_REGION}" \ --display-name="interview-ai-detector-endpoint" \ --format="value(name)") echo "_ENDPOINT_ID=${_ENDPOINT_ID}" - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" entrypoint: "bash" args: - "-c" - | gcloud ai endpoints deploy-model "${_ENDPOINT_ID}" \ --region="${_GCP_VERTEX_AI_REGION}" \ --model="${_MODEL_ID}" \ --display-name="interview-ai-detector-deployment" \ --machine-type="n1-standard-4" \ --accelerator="count=1,type=nvidia-tesla-t4" \ --service-account="${_GCP_VERTEX_AI_SA_EMAIL}"