steps: - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" dir: "core-model-prediction" entrypoint: "bash" args: - "-c" - | gcloud builds submit \ --region="us-central1" --tag=us-central1-docker.pkg.dev/${PROJECT_ID}/interview-ai-detector/model-prediction - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" entrypoint: "bash" args: - "-c" - | MODEL_ID=$(gcloud ai models upload \ --region="us-central1" \ --container-ports=8080 \ --container-image-uri="gcr.io/${PROJECT_ID}/interview-ai-detector/model-prediction:latest" \ --container-predict-route="/predict" \ --container-health-route="/health" \ --display-name="interview-ai-detector-model" \ --format="value(model)") echo "MODEL_ID=${MODEL_ID}" - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" entrypoint: "bash" args: - "-c" - | ENDPOINT_ID=$(gcloud ai endpoints create \ --region="us-central1" \ --display-name="interview-ai-detector-endpoint" \ --format="value(name)") echo "ENDPOINT_ID=${ENDPOINT_ID}" - name: "gcr.io/google.com/cloudsdktool/cloud-sdk" entrypoint: "bash" args: - "-c" - | gcloud ai endpoints deploy-model "${ENDPOINT_ID}" \ --region="us-central1" \ --model="${MODEL_ID}" \ --display-name="interview-ai-detector-deployment" \ --machine-type="n1-standard-4" \ --accelerator="count=1,type=nvidia-tesla-t4" \ --service-account="vertex-ai-user-managed-sa@steady-climate-416810.iam.gserviceaccount.com"