Spaces:
Sleeping
Sleeping
Commit
·
6c2ffca
1
Parent(s):
0ddc9dd
latest changes
Browse files- app.py +179 -198
- requirements.txt +5 -3
app.py
CHANGED
@@ -1,206 +1,187 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoImageProcessor, TimesformerForVideoClassification
|
4 |
import cv2
|
5 |
-
from PIL import Image
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
-
|
9 |
-
import
|
10 |
-
import
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
model.to(device)
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
if
|
49 |
-
return
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# Transition to predicting state
|
69 |
-
app_state = "predicting"
|
70 |
-
yield "Preparing to predict...", "Processing..."
|
71 |
-
print("DEBUG: Transitioning to 'predicting' state.")
|
72 |
-
|
73 |
-
elif app_state == "predicting":
|
74 |
-
# Ensure this prediction block only runs once per cycle
|
75 |
-
if raw_frames_buffer: # Only proceed if there are frames to process
|
76 |
-
print("DEBUG: Starting prediction.")
|
77 |
-
try:
|
78 |
-
sampled_raw_frames = sample_frames(list(raw_frames_buffer), FRAMES_TO_SAMPLE_PER_CLIP)
|
79 |
-
frames_for_model = sample_frames(sampled_raw_frames, MODEL_INPUT_NUM_FRAMES)
|
80 |
-
|
81 |
-
if len(frames_for_model) < MODEL_INPUT_NUM_FRAMES:
|
82 |
-
yield "Error during frame sampling.", f"Error: Not enough frames ({len(frames_for_model)}/{MODEL_INPUT_NUM_FRAMES}). Resetting."
|
83 |
-
print(f"ERROR: Insufficient frames for model input: {len(frames_for_model)}/{MODEL_INPUT_NUM_FRAMES}. Resetting state.")
|
84 |
-
app_state = "recording" # Reset state to start a new recording
|
85 |
-
raw_frames_buffer.clear()
|
86 |
-
current_clip_start_time = time.time()
|
87 |
-
last_prediction_completion_time = time.time()
|
88 |
-
return # Exit this stream call to wait for next frame or reset
|
89 |
-
|
90 |
-
processed_input = processor(images=frames_for_model, return_tensors="pt")
|
91 |
-
pixel_values = processed_input.pixel_values.to(device)
|
92 |
-
|
93 |
-
with torch.no_grad():
|
94 |
-
outputs = model(pixel_values)
|
95 |
-
logits = outputs.logits
|
96 |
-
|
97 |
-
predicted_class_id = logits.argmax(-1).item()
|
98 |
-
predicted_label = model.config.id2label.get(predicted_class_id, "Unknown")
|
99 |
-
confidence = torch.nn.functional.softmax(logits, dim=-1)[0][predicted_class_id].item()
|
100 |
-
|
101 |
-
prediction_result = f"Predicted: {predicted_label} (Confidence: {confidence:.2f})"
|
102 |
-
status_message = "Prediction complete."
|
103 |
-
print(f"DEBUG: Prediction Result: {prediction_result}")
|
104 |
-
|
105 |
-
# Yield the prediction result immediately to ensure UI update
|
106 |
-
yield status_message, prediction_result
|
107 |
-
|
108 |
-
# Clear buffer and transition to delay AFTER yielding the prediction
|
109 |
-
raw_frames_buffer.clear()
|
110 |
-
last_prediction_completion_time = current_time
|
111 |
-
app_state = "processing_delay"
|
112 |
-
print("DEBUG: Transitioning to 'processing_delay' state.")
|
113 |
-
|
114 |
-
except Exception as e:
|
115 |
-
error_message = f"Error during prediction: {e}"
|
116 |
-
print(f"ERROR during prediction: {e}")
|
117 |
-
# Yield error to UI
|
118 |
-
yield "Prediction error.", error_message
|
119 |
-
app_state = "processing_delay" # Still go to delay state to prevent constant errors
|
120 |
-
raw_frames_buffer.clear() # Clear buffer to prevent re-processing same problematic frames
|
121 |
-
|
122 |
-
elif app_state == "processing_delay":
|
123 |
-
elapsed_delay = current_time - last_prediction_completion_time
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
#
|
145 |
-
|
146 |
-
|
147 |
-
#
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
This Space hosts the `{HF_MODEL_REPO_ID}` model.
|
153 |
-
Live webcam demo with recording and prediction phases.
|
154 |
-
**NOTE: This model predicts general human actions (e.g., 'playing guitar', 'walking'), not crime events.**
|
155 |
-
"""
|
156 |
-
)
|
157 |
-
|
158 |
-
with gr.Tab("Live Webcam Demo"):
|
159 |
-
gr.Markdown(
|
160 |
-
f"""
|
161 |
-
Continuously captures live webcam feed for **{RAW_RECORDING_DURATION_SECONDS} seconds**,
|
162 |
-
then makes a prediction. There is a **{DELAY_BETWEEN_PREDICTIONS_SECONDS/60:.0f} minute delay** afterwards.
|
163 |
-
"""
|
164 |
-
)
|
165 |
-
with gr.Row():
|
166 |
-
with gr.Column():
|
167 |
-
webcam_input = gr.Image(
|
168 |
-
sources=["webcam"],
|
169 |
-
streaming=True,
|
170 |
-
label="Live Webcam Feed"
|
171 |
-
)
|
172 |
-
status_output = gr.Textbox(label="Current Status", value="Initializing...")
|
173 |
-
reset_button = gr.Button("Reset / Start New Cycle")
|
174 |
-
with gr.Column():
|
175 |
-
prediction_output = gr.Textbox(label="Prediction Result", value="Waiting...")
|
176 |
-
|
177 |
-
webcam_input.stream(
|
178 |
-
live_predict_stream,
|
179 |
-
inputs=[webcam_input],
|
180 |
-
outputs=[status_output, prediction_output]
|
181 |
-
)
|
182 |
-
|
183 |
-
reset_button.click(
|
184 |
-
reset_app_state_manual,
|
185 |
-
inputs=[],
|
186 |
-
outputs=[status_output, prediction_output]
|
187 |
-
)
|
188 |
-
|
189 |
-
with gr.Tab("API Endpoint for External Clients"):
|
190 |
-
gr.Markdown(
|
191 |
-
"""
|
192 |
-
Use this API endpoint to send base64-encoded frames for prediction.
|
193 |
-
(Currently uses the Kinetics model).
|
194 |
-
"""
|
195 |
-
)
|
196 |
-
gr.Interface(
|
197 |
-
fn=lambda frames_list: "API endpoint is active for programmatic calls. See documentation in app.py.",
|
198 |
-
inputs=gr.Json(label="List of Base64-encoded image strings"),
|
199 |
-
outputs=gr.Textbox(label="API Response"),
|
200 |
-
live=False,
|
201 |
-
allow_flagging="never"
|
202 |
-
)
|
203 |
-
|
204 |
-
|
205 |
-
if __name__ == "__main__":
|
206 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import cv2
|
|
|
4 |
import numpy as np
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision import transforms
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import tempfile # For temporary file handling
|
11 |
+
|
12 |
+
# --- 1. Define Model Architecture (Copy from small_video_classifier.py) ---
|
13 |
+
# This is crucial because we need the model class definition to load weights.
|
14 |
+
class SmallVideoClassifier(torch.nn.Module):
|
15 |
+
def __init__(self, num_classes=2, num_frames=8):
|
16 |
+
super(SmallVideoClassifier, self).__init__()
|
17 |
+
from torchvision.models import mobilenet_v3_small, MobileNet_V3_Small_Weights
|
18 |
+
# Load weights only if they are available (they should be for IMAGENET1K_V1)
|
19 |
+
# Use a check to prevent error if weights are not found in specific environments
|
20 |
+
try:
|
21 |
+
weights = MobileNet_V3_Small_Weights.IMAGENET1K_V1
|
22 |
+
except Exception:
|
23 |
+
print("Warning: MobileNet_V3_Small_Weights.IMAGENET1K_V1 not found, initializing without pre-trained weights.")
|
24 |
+
weights = None # Or provide specific default for your use case
|
25 |
+
|
26 |
+
self.feature_extractor = mobilenet_v3_small(weights=weights)
|
27 |
+
self.feature_extractor.classifier = torch.nn.Identity()
|
28 |
+
self.num_spatial_features = 576 # MobileNetV3-Small's final feature map size
|
29 |
+
self.temporal_aggregator = torch.nn.AdaptiveAvgPool1d(1)
|
30 |
+
self.classifier = torch.nn.Sequential(
|
31 |
+
torch.nn.Linear(self.num_spatial_features, 512),
|
32 |
+
torch.nn.ReLU(),
|
33 |
+
torch.nn.Dropout(0.2),
|
34 |
+
torch.nn.Linear(512, num_classes)
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, pixel_values):
|
38 |
+
batch_size, num_frames, channels, height, width = pixel_values.shape
|
39 |
+
x = pixel_values.view(batch_size * num_frames, channels, height, width)
|
40 |
+
spatial_features = self.feature_extractor(x)
|
41 |
+
spatial_features = spatial_features.view(batch_size, num_frames, self.num_spatial_features)
|
42 |
+
temporal_features = self.temporal_aggregator(spatial_features.permute(0, 2, 1)).squeeze(-1)
|
43 |
+
logits = self.classifier(temporal_features)
|
44 |
+
return logits
|
45 |
+
|
46 |
+
# --- 2. Configuration and Model Loading ---
|
47 |
+
HF_USERNAME = "owinymarvin"
|
48 |
+
NEW_MODEL_REPO_ID_SHORT = "timesformer-violence-detector"
|
49 |
+
NEW_MODEL_REPO_ID = f"{HF_USERNAME}/{NEW_MODEL_REPO_ID_SHORT}"
|
50 |
+
|
51 |
+
# Download config.json to get model parameters
|
52 |
+
print(f"Downloading config.json from {NEW_MODEL_REPO_ID}...")
|
53 |
+
config_path = hf_hub_download(repo_id=NEW_MODEL_REPO_ID, filename="config.json")
|
54 |
+
with open(config_path, 'r') as f:
|
55 |
+
model_config = json.load(f)
|
56 |
+
|
57 |
+
NUM_FRAMES = model_config.get('num_frames', 8)
|
58 |
+
IMAGE_SIZE = tuple(model_config.get('image_size', [224, 224]))
|
59 |
+
NUM_CLASSES = model_config.get('num_classes', 2)
|
60 |
+
|
61 |
+
# Define class labels (adjust if your dataset had different labels/order)
|
62 |
+
CLASS_LABELS = ["Non-violence", "Violence"]
|
63 |
+
if NUM_CLASSES != len(CLASS_LABELS):
|
64 |
+
print(f"Warning: NUM_CLASSES in config ({NUM_CLASSES}) does not match hardcoded CLASS_LABELS length ({len(CLASS_LABELS)}). Adjust CLASS_LABELS if needed.")
|
65 |
+
|
66 |
+
|
67 |
+
# Initialize the model
|
68 |
+
device = torch.device("cpu") # Explicitly use CPU as requested
|
69 |
+
print(f"Using device: {device}")
|
70 |
+
|
71 |
+
model = SmallVideoClassifier(num_classes=NUM_CLASSES, num_frames=NUM_FRAMES)
|
72 |
+
|
73 |
+
# Download model weights
|
74 |
+
print(f"Downloading model weights from {NEW_MODEL_REPO_ID}...")
|
75 |
+
model_weights_path = hf_hub_download(repo_id=NEW_MODEL_REPO_ID, filename="small_violence_classifier.pth")
|
76 |
+
model.load_state_dict(torch.load(model_weights_path, map_location=device))
|
77 |
model.to(device)
|
78 |
+
model.eval() # Set model to evaluation mode
|
79 |
+
|
80 |
+
print(f"Model loaded successfully with {NUM_FRAMES} frames and image size {IMAGE_SIZE}.")
|
81 |
+
|
82 |
+
# --- 3. Define Preprocessing Transform ---
|
83 |
+
transform = transforms.Compose([
|
84 |
+
transforms.Resize(IMAGE_SIZE),
|
85 |
+
transforms.ToTensor(),
|
86 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
87 |
+
])
|
88 |
+
|
89 |
+
# --- 4. Gradio Inference Function ---
|
90 |
+
def predict_video(video_path):
|
91 |
+
if video_path is None:
|
92 |
+
return None # Or raise an error, or return a placeholder video
|
93 |
+
|
94 |
+
cap = cv2.VideoCapture(video_path)
|
95 |
+
|
96 |
+
if not cap.isOpened():
|
97 |
+
print(f"Error: Could not open video file {video_path}.")
|
98 |
+
raise ValueError(f"Could not open video file {video_path}. Please ensure it's a valid video format.")
|
99 |
+
|
100 |
+
# Get video properties
|
101 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
102 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
103 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
104 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
105 |
+
|
106 |
+
# Create a temporary output video file
|
107 |
+
# Use tempfile to ensure proper cleanup on Hugging Face Spaces
|
108 |
+
temp_output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
109 |
+
output_video_path = temp_output_file.name
|
110 |
+
temp_output_file.close() # Close the file handle as cv2.VideoWriter needs to open it
|
111 |
+
|
112 |
+
# Define the codec and create VideoWriter object
|
113 |
+
# For MP4, 'mp4v' is generally compatible.
|
114 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
115 |
+
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
116 |
+
|
117 |
+
print(f"Processing video: {video_path}")
|
118 |
+
print(f"Total frames: {total_frames}, FPS: {fps}")
|
119 |
+
print(f"Output video will be saved to: {output_video_path}")
|
120 |
+
|
121 |
+
frame_buffer = [] # To store NUM_FRAMES for each prediction batch
|
122 |
+
current_prediction_label = "Processing..." # Initial label
|
123 |
+
|
124 |
+
frame_idx = 0
|
125 |
+
while True:
|
126 |
+
ret, frame = cap.read()
|
127 |
+
if not ret:
|
128 |
+
break # End of video
|
129 |
+
|
130 |
+
frame_idx += 1
|
131 |
|
132 |
+
# Convert frame from BGR (OpenCV) to RGB (PIL/PyTorch)
|
133 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
134 |
+
pil_image = Image.fromarray(frame_rgb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
# Apply transformations and add to buffer
|
137 |
+
processed_frame = transform(pil_image) # shape: (C, H, W)
|
138 |
+
frame_buffer.append(processed_frame)
|
139 |
+
|
140 |
+
# Perform prediction when the buffer is full
|
141 |
+
if len(frame_buffer) == NUM_FRAMES:
|
142 |
+
# Stack the buffered frames and add a batch dimension
|
143 |
+
# Resulting shape: (1, NUM_FRAMES, C, H, W)
|
144 |
+
input_tensor = torch.stack(frame_buffer, dim=0).unsqueeze(0).to(device)
|
145 |
+
|
146 |
+
with torch.no_grad():
|
147 |
+
outputs = model(input_tensor)
|
148 |
+
probabilities = torch.softmax(outputs, dim=1)
|
149 |
+
predicted_class_idx = torch.argmax(probabilities, dim=1).item()
|
150 |
+
current_prediction_label = f"Prediction: {CLASS_LABELS[predicted_class_idx]} (Prob: {probabilities[0, predicted_class_idx]:.2f})"
|
151 |
+
|
152 |
+
# Reset buffer for the next non-overlapping window
|
153 |
+
frame_buffer = []
|
154 |
+
# Or, if you want sliding window (more continuous output but higher compute):
|
155 |
+
# frame_buffer = frame_buffer[1:] # e.g., slide by 1 frame
|
156 |
+
|
157 |
+
# Draw prediction text on the current frame
|
158 |
+
# The prediction will lag by NUM_FRAMES, as it's based on the previous batch.
|
159 |
+
# We display the last known prediction.
|
160 |
+
cv2.putText(frame, current_prediction_label, (10, 30),
|
161 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2, cv2.LINE_AA)
|
162 |
+
|
163 |
+
# Write the processed frame to the output video
|
164 |
+
out.write(frame)
|
165 |
+
|
166 |
+
# Release resources
|
167 |
+
cap.release()
|
168 |
+
out.release()
|
169 |
+
print(f"Video processing complete. Output saved to: {output_video_path}")
|
170 |
|
171 |
+
return output_video_path # Gradio expects the path to the output video
|
172 |
+
|
173 |
+
# --- 5. Gradio Interface Setup ---
|
174 |
+
iface = gr.Interface(
|
175 |
+
fn=predict_video,
|
176 |
+
inputs=gr.Video(label="Upload Video for Violence Detection (MP4 recommended)", type="filepath"),
|
177 |
+
outputs=gr.Video(label="Processed Video with Predictions"),
|
178 |
+
title="Real-time Violence Detection with SmallVideoClassifier",
|
179 |
+
description="Upload a video, and the model will analyze it for violence, displaying the predicted class and confidence on each frame.",
|
180 |
+
allow_flagging="never", # Disable flagging on Hugging Face Spaces
|
181 |
+
examples=[
|
182 |
+
# You can provide example video URLs or paths if you have them publicly available
|
183 |
+
# Example: "https://huggingface.co/datasets/gradio/test-files/resolve/main/video.mp4"
|
184 |
+
]
|
185 |
+
)
|
186 |
+
|
187 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
torch
|
2 |
-
|
3 |
-
opencv-python-headless
|
|
|
|
|
4 |
Pillow
|
5 |
-
|
|
|
1 |
torch
|
2 |
+
torchvision
|
3 |
+
opencv-python-headless # Use headless for server environments to avoid GUI dependencies
|
4 |
+
gradio
|
5 |
+
huggingface_hub
|
6 |
Pillow
|
7 |
+
numpy
|