File size: 9,360 Bytes
89ce7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import torch
from transformers import AutoImageProcessor, TimesformerForVideoClassification
import cv2
from PIL import Image
import numpy as np
import time
from collections import deque
import base64
import io

# --- Configuration ---
HF_MODEL_REPO_ID = "owinymarvin/timesformer-crime-detection"
MODEL_INPUT_NUM_FRAMES = 8
TARGET_IMAGE_HEIGHT = 224
TARGET_IMAGE_WIDTH = 224
RAW_RECORDING_DURATION_SECONDS = 10.0
FRAMES_TO_SAMPLE_PER_CLIP = 20
DELAY_BETWEEN_PREDICTIONS_SECONDS = 120.0 # 2 minutes for CPU

# --- Load Model and Processor ---
print(f"Loading model and processor from {HF_MODEL_REPO_ID}...")
try:
    processor = AutoImageProcessor.from_pretrained(HF_MODEL_REPO_ID)
    model = TimesformerForVideoClassification.from_pretrained(HF_MODEL_REPO_ID)
except Exception as e:
    print(f"Error loading model: {e}")
    exit()

model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Model loaded on {device}.")

# --- Global State Variables for Live Demo ---
raw_frames_buffer = deque()
current_clip_start_time = time.time()
last_prediction_completion_time = time.time()
app_state = "recording" # States: "recording", "predicting", "processing_delay"

# --- Helper function to sample frames ---
def sample_frames(frames_list, target_count):
    if not frames_list:
        return []
    if len(frames_list) <= target_count:
        return frames_list
    indices = np.linspace(0, len(frames_list) - 1, target_count, dtype=int)
    sampled = [frames_list[int(i)] for i in indices]
    return sampled

# --- Main processing function for Live Demo Stream ---
def live_predict_stream(image_np_array):
    global raw_frames_buffer, current_clip_start_time, last_prediction_completion_time, app_state

    current_time = time.time()
    pil_image = Image.fromarray(image_np_array)

    if app_state == "recording":
        raw_frames_buffer.append(pil_image)
        elapsed_recording_time = current_time - current_clip_start_time
        
        yield f"Recording: {elapsed_recording_time:.1f}/{RAW_RECORDING_DURATION_SECONDS}s. Raw frames: {len(raw_frames_buffer)}", "Buffering..."

        if elapsed_recording_time >= RAW_RECORDING_DURATION_SECONDS:
            # Transition to predicting state
            app_state = "predicting"
            yield "Preparing to predict...", "Processing..."
            print("DEBUG: Transitioning to 'predicting' state.")

    elif app_state == "predicting":
        # Ensure this prediction block only runs once per cycle
        if raw_frames_buffer: # Only proceed if there are frames to process
            print("DEBUG: Starting prediction.")
            try:
                sampled_raw_frames = sample_frames(list(raw_frames_buffer), FRAMES_TO_SAMPLE_PER_CLIP)
                frames_for_model = sample_frames(sampled_raw_frames, MODEL_INPUT_NUM_FRAMES)

                if len(frames_for_model) < MODEL_INPUT_NUM_FRAMES:
                    yield "Error during frame sampling.", f"Error: Not enough frames ({len(frames_for_model)}/{MODEL_INPUT_NUM_FRAMES}). Resetting."
                    print(f"ERROR: Insufficient frames for model input: {len(frames_for_model)}/{MODEL_INPUT_NUM_FRAMES}. Resetting state.")
                    app_state = "recording" # Reset state to start a new recording
                    raw_frames_buffer.clear()
                    current_clip_start_time = time.time()
                    last_prediction_completion_time = time.time()
                    return # Exit this stream call to wait for next frame or reset

                processed_input = processor(images=frames_for_model, return_tensors="pt")
                pixel_values = processed_input.pixel_values.to(device)

                with torch.no_grad():
                    outputs = model(pixel_values)
                    logits = outputs.logits

                predicted_class_id = logits.argmax(-1).item()
                predicted_label = model.config.id2label.get(predicted_class_id, "Unknown")
                confidence = torch.nn.functional.softmax(logits, dim=-1)[0][predicted_class_id].item()

                prediction_result = f"Predicted: {predicted_label} (Confidence: {confidence:.2f})"
                status_message = "Prediction complete."
                print(f"DEBUG: Prediction Result: {prediction_result}")
                
                # Yield the prediction result immediately to ensure UI update
                yield status_message, prediction_result

                # Clear buffer and transition to delay AFTER yielding the prediction
                raw_frames_buffer.clear()
                last_prediction_completion_time = current_time
                app_state = "processing_delay"
                print("DEBUG: Transitioning to 'processing_delay' state.")

            except Exception as e:
                error_message = f"Error during prediction: {e}"
                print(f"ERROR during prediction: {e}")
                # Yield error to UI
                yield "Prediction error.", error_message
                app_state = "processing_delay" # Still go to delay state to prevent constant errors
                raw_frames_buffer.clear() # Clear buffer to prevent re-processing same problematic frames

    elif app_state == "processing_delay":
        elapsed_delay = current_time - last_prediction_completion_time
        
        if elapsed_delay < DELAY_BETWEEN_PREDICTIONS_SECONDS:
            # Continue yielding the delay message and the last prediction result
            # Assuming prediction_result from previous state is still held by UI
            yield f"Delaying next prediction: {int(elapsed_delay)}/{int(DELAY_BETWEEN_PREDICTIONS_SECONDS)}s", gr.NO_VALUE # NO_VALUE keeps previous prediction visible
        else:
            # Delay is over, reset for new recording cycle
            app_state = "recording"
            current_clip_start_time = current_time
            print("DEBUG: Transitioning back to 'recording' state.")
            yield "Starting new recording...", "Ready for new prediction."
    
    # If for some reason nothing is yielded, return the current state to prevent UI freeze.
    # This acts as a fallback if no state transition happens.
    # However, with the yield statements, this might be less critical.
    # For streaming, yielding is the preferred way to update.
    # If the function ends without yielding, Gradio will just keep the last state.
    # We always yield in every branch.
    pass # No explicit return needed at the end if all paths yield

def reset_app_state_manual():
    global raw_frames_buffer, current_clip_start_time, last_prediction_completion_time, app_state
    raw_frames_buffer.clear()
    current_clip_start_time = time.time()
    last_prediction_completion_time = time.time()
    app_state = "recording"
    print("DEBUG: Manual reset triggered.")
    # Return initial values immediately upon reset
    return "Ready to record...", "Ready for new prediction."

# --- Gradio UI Layout ---
with gr.Blocks() as demo:
    gr.Markdown(
        f"""
        # TimesFormer Crime Detection - Hugging Face Space Host
        This Space hosts the `owinymarvin/timesformer-crime-detection` model.
        Live webcam demo with recording and prediction phases.
        """
    )

    with gr.Tab("Live Webcam Demo"):
        gr.Markdown(
            f"""
            Continuously captures live webcam feed for **{RAW_RECORDING_DURATION_SECONDS} seconds**,
            then makes a prediction. There is a **{DELAY_BETWEEN_PREDICTIONS_SECONDS/60:.0f} minute delay** afterwards.
            """
        )
        with gr.Row():
            with gr.Column():
                webcam_input = gr.Image(
                    sources=["webcam"],
                    streaming=True,
                    label="Live Webcam Feed"
                )
                status_output = gr.Textbox(label="Current Status", value="Initializing...")
                reset_button = gr.Button("Reset / Start New Cycle")
            with gr.Column():
                prediction_output = gr.Textbox(label="Prediction Result", value="Waiting...")

        # IMPORTANT: Use webcam_input.stream() with a generator function (live_predict_stream)
        # to enable progressive updates via 'yield'.
        webcam_input.stream(
            live_predict_stream,
            inputs=[webcam_input],
            outputs=[status_output, prediction_output]
        )
        
        # The reset button is a regular click event, not a stream
        reset_button.click(
            reset_app_state_manual,
            inputs=[],
            outputs=[status_output, prediction_output]
        )

    with gr.Tab("API Endpoint for External Clients"):
        gr.Markdown(
            """
            Use this API endpoint to send base64-encoded frames for prediction.
            """
        )
        # Placeholder for the API tab. The actual API calls target /run/predict_from_frames_api
        gr.Interface(
            fn=lambda frames_list: "API endpoint is active for programmatic calls. See documentation in app.py.",
            inputs=gr.Json(label="List of Base64-encoded image strings"),
            outputs=gr.Textbox(label="API Response"),
            live=False,
            allow_flagging="never"
        )


if __name__ == "__main__":
    demo.launch()