image-i1-dev / app.py
ovi054's picture
Update app.py
22ada24 verified
raw
history blame
6.68 kB
import gradio as gr
import spaces
import torch
from diffusers import HiDreamImagePipeline
from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
import random
import numpy as np
# Set data type
dtype = torch.bfloat16
device = "cpu" # Use CPU for model loading to avoid CUDA initialization
# Load tokenizer and text encoder for Llama
try:
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
text_encoder_4 = LlamaForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
output_hidden_states=True,
output_attentions=True,
torch_dtype=dtype,
).to(device)
except Exception as e:
raise Exception(f"Failed to load Llama model: {e}. Ensure you have access to 'meta-llama/Meta-Llama-3.1-8B-Instruct' and are logged in via `huggingface-cli login`.")
# Load the HiDreamImagePipeline
try:
pipe = HiDreamImagePipeline.from_pretrained(
"HiDream-ai/HiDream-I1-Dev",
tokenizer_4=tokenizer_4,
text_encoder_4=text_encoder_4,
torch_dtype=dtype,
).to(device)
pipe.enable_model_cpu_offload() # Offload to CPU, automatically manages GPU placement
except Exception as e:
raise Exception(f"Failed to load HiDreamImagePipeline: {e}. Ensure you have access to 'HiDream-ai/HiDream-I1-Full'.")
# Define maximum values
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Inference function with GPU access
@spaces.GPU()
def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=28, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator("cuda").manual_seed(seed)
# Generate the image; offloading handles device placement
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
output_type="pil",
).images[0]
return image, seed
finally:
# Clear GPU memory
torch.cuda.empty_cache()
# Define examples
examples = [
["A cat holding a sign that says \"Hi-Dreams.ai\".", ""],
["A futuristic cityscape with flying cars.", "blurry, low quality"],
["A serene landscape with mountains and a lake.", ""],
]
# CSS styling
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as app:
gr.HTML("<center><h1>HiDreamImage Generator</h1></center>")
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
with gr.Row():
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Enter a prompt here",
lines=3,
elem_id="prompt-text-input"
)
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Enter what to avoid (optional)",
lines=2
)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
value=1024,
minimum=64,
maximum=MAX_IMAGE_SIZE,
step=8
)
height = gr.Slider(
label="Height",
value=1024,
minimum=64,
maximum=MAX_IMAGE_SIZE,
step=8
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
value=28,
minimum=1,
maximum=100,
step=1
)
cfg = gr.Slider(
label="Guidance Scale",
value=3.5,
minimum=1,
maximum=20,
step=0.5
)
with gr.Row():
seed = gr.Slider(
label="Seed",
value=42,
minimum=0,
maximum=MAX_SEED,
step=1
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
with gr.Row():
text_button = gr.Button(
"✨ Generate Image",
variant='primary',
elem_classes=["generate-btn"]
)
with gr.Column():
with gr.Row():
image_output = gr.Image(
type="pil",
label="Generated Image",
elem_id="gallery"
)
seed_output = gr.Textbox(
label="Seed Used",
interactive=False
)
with gr.Column():
gr.Examples(
examples=examples,
inputs=[text_prompt, negative_prompt],
)
# Connect the button and textbox submit to the inference function
gr.on(
triggers=[text_button.click, text_prompt.submit],
fn=infer,
inputs=[text_prompt, negative_prompt, seed, randomize_seed, width, height, steps, cfg],
outputs=[image_output, seed_output]
)
app.launch(share=True)