image-i1-dev / app.py
ovi054's picture
Create app.py
0b7c365 verified
raw
history blame
6.9 kB
import gradio as gr
import torch
from diffusers import HiDreamImagePipeline
from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
import random
import spaces
import numpy as np
# Set data type
dtype = torch.bfloat16
device = "cpu" # Initial device for model loading; inference will use GPU
# Load tokenizer and text encoder for Llama
try:
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
text_encoder_4 = LlamaForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
output_hidden_states=True,
output_attentions=True,
torch_dtype=dtype,
).to(device)
except Exception as e:
raise Exception(f"Failed to load Llama model: {e}. Ensure you have access to 'meta-llama/Meta-Llama-3.1-8B-Instruct' and are logged in via `huggingface-cli login`.")
# Load the HiDreamImagePipeline
try:
pipe = HiDreamImagePipeline.from_pretrained(
"HiDream-ai/HiDream-I1-Full",
tokenizer_4=tokenizer_4,
text_encoder_4=text_encoder_4,
torch_dtype=dtype,
).to(device)
pipe.enable_model_cpu_offload() # Offload to CPU when not in use, critical for Spaces
except Exception as e:
raise Exception(f"Failed to load HiDreamImagePipeline: {e}. Ensure you have access to 'HiDream-ai/HiDream-I1-Full'.")
# Define maximum values
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Inference function with GPU access
@spaces.GPU()
def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=5.0, progress=gr.Progress(track_tqdm=True)):
# Ensure the model is on GPU for inference
pipe.to("cuda")
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator("cuda").manual_seed(seed)
# Generate the image
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
output_type="pil",
).images[0]
# Clear GPU memory
torch.cuda.empty_cache()
return image, seed
finally:
# Move model back to CPU to free GPU memory
pipe.to("cpu")
torch.cuda.empty_cache()
# Define examples
examples = [
["A cat holding a sign that says \"Hi-Dreams.ai\".", ""],
["A futuristic cityscape with flying cars.", "blurry, low quality"],
["A serene landscape with mountains and a lake.", ""],
]
# CSS styling
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as app:
gr.HTML("<center><h1>HiDreamImage Generator</h1></center>")
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
with gr.Row():
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Enter a prompt here",
lines=3,
elem_id="prompt-text-input"
)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
value=1024,
minimum=64,
maximum=MAX_IMAGE_SIZE,
step=8
)
height = gr.Slider(
label="Height",
value=1024,
minimum=64,
maximum=MAX_IMAGE_SIZE,
step=8
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
value=50,
minimum=1,
maximum=100,
step=1
)
cfg = gr.Slider(
label="Guidance Scale",
value=5.0,
minimum=1,
maximum=20,
step=0.5
)
with gr.Row():
seed = gr.Slider(
label="Seed",
value=42,
minimum=0,
maximum=MAX_SEED,
step=1
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Enter what to avoid (optional)",
lines=2
)
with gr.Row():
text_button = gr.Button(
"✨ Generate Image",
variant='primary',
elem_classes=["generate-btn"]
)
with gr.Column():
with gr.Row():
image_output = gr.Image(
type="pil",
label="Generated Image",
elem_id="gallery"
)
seed_output = gr.Textbox(
label="Seed Used",
interactive=False
)
with gr.Column():
gr.Examples(
examples=examples,
inputs=[text_prompt, negative_prompt],
)
# Connect the button and textbox submit to the inference function
gr.on(
triggers=[text_button.click, text_prompt.submit],
fn=infer,
inputs=[text_prompt, negative_prompt, seed, randomize_seed, width, height, steps, cfg],
outputs=[image_output, seed_output]
)
# Launch the app
app.launch(share=True)