Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,510 Bytes
0b7c365 ed7a1b2 0b7c365 ed7a1b2 0b7c365 ed7a1b2 0b7c365 ed7a1b2 c8f7bf3 4979375 c8f7bf3 1829c4c c8f7bf3 a474898 c8f7bf3 a474898 c8f7bf3 1829c4c c8f7bf3 a474898 c8f7bf3 a474898 0b7c365 ed7a1b2 0b7c365 c8f7bf3 ed7a1b2 a474898 be31f5e a474898 be31f5e a474898 c8f7bf3 be31f5e a474898 be31f5e 0b7c365 c8f7bf3 ed7a1b2 de7f24e ed7a1b2 c8f7bf3 ed7a1b2 0b7c365 972e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import torch
from diffusers import UniPCMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import gradio as gr
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- MODEL SETUP ---
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 1.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
pipe.to(device)
# --- LORA SETUP ---
CAUSVID_NAME = "causvid_base"
PERSONVID_NAME = "personvid_optional"
ROSMX_NAME = "rosmx_optional"
OVIMX_NAME = "ovimx_optional"
OVIMX2_NAME = "ovimx2_optional"
OVIMX3_NAME = "ovimx3_optional"
PRTHE_NAME = "prthe_optional"
ROSMX2_NAME = "rosmx2_optional"
PERSONVID2_NAME = "personvid2_optional"
lora_definitions = {
CAUSVID_NAME: ("joerose/Wan21_T2V_14B_lightx2v_cfg_step_distill_lora_rank32", "Wan21_T2V_14B_lightx2v_cfg_step_distill_lora_rank32.safetensors"),
PERSONVID_NAME: ("ovi054/p3r5onVid1000", None),
ROSMX_NAME: ("ovi054/rosmxVid1500", None),
OVIMX_NAME: ("ovi054/ovimxVid1750", None),
OVIMX2_NAME: ("ovi054/ovimxVid2250", None),
OVIMX3_NAME: ("ovi054/ovimxVid2500", None),
PRTHE_NAME: ("ovi054/prwthxVid", None),
ROSMX2_NAME: ("ovi054/rosmxVid2000", None),
PERSONVID2_NAME: ("ovi054/p3r5onVid1900", None)
}
# --- THIS ORDERED LIST IS NOW CRITICAL ---
# It defines the consistent order for the weight vector.
ALL_ADAPTER_NAMES = []
for name, (repo, filename) in lora_definitions.items():
print(f"Attempting to load LoRA '{name}'...")
try:
if filename:
path = hf_hub_download(repo_id=repo, filename=filename)
pipe.load_lora_weights(path, adapter_name=name, device_map="auto")
else:
pipe.load_lora_weights(repo, adapter_name=name, device_map="auto")
print(f"✅ LoRA '{name}' loaded successfully.")
ALL_ADAPTER_NAMES.append(name)
except Exception as e:
print(f"⚠️ LoRA '{name}' could not be loaded: {e}")
OPTIONAL_LORA_MAP = {
"ovi054/p3r5onVid1000": PERSONVID_NAME,
"ovi054/rosmxVid1500": ROSMX_NAME,
"ovi054/ovimxVid1750": OVIMX_NAME,
"ovi054/ovimxVid2250": OVIMX2_NAME,
"ovi054/ovimxVid2500": OVIMX3_NAME,
"ovi054/prwthxVid": PRTHE_NAME,
"ovi054/rosmxVid2000": ROSMX2_NAME,
"ovi054/p3r5onVid1900": PERSONVID2_NAME,
}
# Filter choices to only include LoRAs that actually loaded
OPTIONAL_LORA_CHOICES = {k: v for k, v in OPTIONAL_LORA_MAP.items() if v in ALL_ADAPTER_NAMES}
# --- SET INITIAL STATE AT STARTUP ---
# Set ALL adapters as active, but control them with weights.
if ALL_ADAPTER_NAMES:
print(f"Setting up all {len(ALL_ADAPTER_NAMES)} loaded adapters in the pipeline.")
# Start with all weights at 0.0
initial_weights = [0.0] * len(ALL_ADAPTER_NAMES)
# Set the base LoRA's weight to 1.0
try:
base_lora_index = ALL_ADAPTER_NAMES.index(CAUSVID_NAME)
initial_weights[base_lora_index] = 1.0
except ValueError:
print(f"Warning: Base LoRA '{CAUSVID_NAME}' not found in the loaded list. All weights start at 0.")
print(f"Setting initial state: adapters={ALL_ADAPTER_NAMES}, weights={initial_weights}")
pipe.set_adapters(ALL_ADAPTER_NAMES, adapter_weights=initial_weights)
else:
print("No LoRAs were loaded.")
print("Initialization complete. Gradio is starting...")
@spaces.GPU()
def generate(prompt, negative_prompt, width, height, num_inference_steps, optional_lora_id, progress=gr.Progress(track_tqdm=True)):
# --- Step 1: ALWAYS build the full weight vector from scratch for THIS run ---
# Start with the default state: base LoRA on, others off.
adapter_weights = [0.0] * len(ALL_ADAPTER_NAMES)
try:
base_lora_index = ALL_ADAPTER_NAMES.index(CAUSVID_NAME)
adapter_weights[base_lora_index] = 1.0
except ValueError:
pass # Base lora was not loaded, so its weight remains 0.
# If an optional LoRA is selected, turn its weight on.
if optional_lora_id and optional_lora_id != "None":
internal_name_to_add = OPTIONAL_LORA_CHOICES.get(optional_lora_id)
if internal_name_to_add:
try:
optional_lora_index = ALL_ADAPTER_NAMES.index(internal_name_to_add)
adapter_weights[optional_lora_index] = 1.0
except ValueError:
print(f"Warning: Could not find index for selected LoRA '{internal_name_to_add}'. It will not be applied.")
# --- Step 2: Apply the calculated state, OVERWRITING any previous state ---
# We always pass the FULL list of adapters, just with different weights.
print(f"Setting weights for this run: {list(zip(ALL_ADAPTER_NAMES, adapter_weights))}")
pipe.set_adapters(ALL_ADAPTER_NAMES, adapter_weights=adapter_weights)
apply_cache_on_pipe(pipe)
# --- Step 3: Run inference ---
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=1,
num_inference_steps=num_inference_steps,
guidance_scale=1.0,
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
# --- Gradio Interface ---
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
],
additional_inputs = [
gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10),
gr.Textbox(
label="Optional LoRA",
)
],
outputs=gr.Image(label="output"),
)
iface.launch(debug=True) |