import spaces import torch from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel # from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe from PIL import Image import numpy as np import gradio as gr import os # device = "cuda" if torch.cuda.is_available() else "cpu" # model_id = "hunyuanvideo-community/HunyuanVideo" model_id = "FastVideo/FastHunyuan-diffusers" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 ) pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16) pipe.vae.enable_tiling() # pipe.load_lora_weights("") # pipe.to("cuda") @spaces.GPU() def generate(prompt, width=832, height=832, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)): if lora_id and lora_id.strip() != "": pipe.unload_lora_weights() pipe.load_lora_weights(lora_id.strip()) # apply_cache_on_pipe( # pipe, # # residual_diff_threshold=0.2, # ) pipe.to("cuda") torch.cuda.empty_cache() try: output = pipe( prompt=prompt, # negative_prompt=negative_prompt, height=height, width=width, num_frames=1, num_inference_steps=num_inference_steps, # guidance_scale=5.0, ).frames[0][0] # image = (output * 255).astype(np.uint8) # return Image.fromarray(image) return output finally: # Always clear memory, even if an error occurs if lora_id and lora_id.strip() != "": pipe.unload_lora_weights() torch.cuda.empty_cache() iface = gr.Interface( fn=generate, inputs=[ gr.Textbox(label="Input prompt"), ], additional_inputs = [ # gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"), gr.Slider(label="Width", minimum=192, maximum=1280, step=16, value=832), gr.Slider(label="Height", minimum=192, maximum=1280, step=16, value=832), gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10), gr.Textbox(label="LoRA ID"), ], outputs=gr.Image(label="output"), ) iface.launch(share=True, debug=True)