fix: seed to gnerator
Browse files- inference.py +5 -5
inference.py
CHANGED
@@ -43,16 +43,16 @@ class DiffusionInference:
|
|
43 |
if seed is not None:
|
44 |
try:
|
45 |
# Convert to integer and add to params
|
46 |
-
|
47 |
except (ValueError, TypeError):
|
48 |
# Use random seed if conversion fails
|
49 |
random_seed = random.randint(0, 3999999999) # Max 32-bit integer
|
50 |
-
|
51 |
print(f"Warning: Invalid seed value: {seed}, using random seed {random_seed} instead")
|
52 |
else:
|
53 |
# Generate random seed when none is provided
|
54 |
random_seed = random.randint(0, 3999999999) # Max 32-bit integer
|
55 |
-
|
56 |
print(f"Using random seed: {random_seed}")
|
57 |
|
58 |
# Add negative prompt if provided
|
@@ -66,7 +66,7 @@ class DiffusionInference:
|
|
66 |
|
67 |
try:
|
68 |
# Call the API with all parameters as kwargs
|
69 |
-
image = self.run_text_to_image_pipeline(model, **params)
|
70 |
return image
|
71 |
except Exception as e:
|
72 |
print(f"Error generating image: {e}")
|
@@ -164,6 +164,6 @@ class DiffusionInference:
|
|
164 |
|
165 |
@spaces.GPU
|
166 |
def run_text_to_image_pipeline(self, model_name, **kwargs):
|
167 |
-
pipeline = AutoPipelineForText2Image.from_pretrained(model_name, torch_dtype=torch.float16).to("cuda")
|
168 |
image = pipeline(**kwargs).images[0]
|
169 |
return image
|
|
|
43 |
if seed is not None:
|
44 |
try:
|
45 |
# Convert to integer and add to params
|
46 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
47 |
except (ValueError, TypeError):
|
48 |
# Use random seed if conversion fails
|
49 |
random_seed = random.randint(0, 3999999999) # Max 32-bit integer
|
50 |
+
generator = torch.Generator(device="cuda").manual_seed(random_seed)
|
51 |
print(f"Warning: Invalid seed value: {seed}, using random seed {random_seed} instead")
|
52 |
else:
|
53 |
# Generate random seed when none is provided
|
54 |
random_seed = random.randint(0, 3999999999) # Max 32-bit integer
|
55 |
+
generator = torch.Generator(device="cuda").manual_seed(random_seed)
|
56 |
print(f"Using random seed: {random_seed}")
|
57 |
|
58 |
# Add negative prompt if provided
|
|
|
66 |
|
67 |
try:
|
68 |
# Call the API with all parameters as kwargs
|
69 |
+
image = self.run_text_to_image_pipeline(model, generator, **params)
|
70 |
return image
|
71 |
except Exception as e:
|
72 |
print(f"Error generating image: {e}")
|
|
|
164 |
|
165 |
@spaces.GPU
|
166 |
def run_text_to_image_pipeline(self, model_name, **kwargs):
|
167 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(model_name, generator=generator, torch_dtype=torch.float16).to("cuda")
|
168 |
image = pipeline(**kwargs).images[0]
|
169 |
return image
|