#!/usr/bin/env python3 import gradio as gr import os import hashlib import json import traceback import zipfile import tempfile import shutil from pathlib import Path import requests import threading import time from typing import List, Dict, Optional, Tuple from dataclasses import dataclass from concurrent.futures import ThreadPoolExecutor, as_completed # Global variables for progress tracking upload_progress = {"current": 0, "total": 0, "status": "", "files_processed": [], "errors": [], "final_summary": ""} upload_lock = threading.Lock() @dataclass class ProcessResult: filename: str status: str # "skipped", "uploaded", "error" message: str file_hash: Optional[str] = None def calculate_sha256(filepath: Path) -> str: """Calculate SHA256 hash of a file""" sha256_hash = hashlib.sha256() with open(filepath, "rb") as f: # Read in 100MB chunks for better performance for byte_block in iter(lambda: f.read(104857600), b""): sha256_hash.update(byte_block) return sha256_hash.hexdigest() def check_hash_exists(file_hash: str) -> bool: """Check if file hash already exists in datadrones.com""" try: hash_request = requests.get( f"https://dl.datadrones.com/api/model/sha256sum/{file_hash}", timeout=10 ) return hash_request.status_code == 200 except Exception as e: print(f"Error checking hash existence: {e}") return False def find_by_hash(file_hash: str) -> Optional[Dict]: """Find metadata by hash from Civitai and other sources""" # Get Civitai API key from environment variable (HuggingFace Spaces secret) civitai_api_key = os.getenv("CIVITAI_API_KEY") header = { "Content-Type": "application/json", } # Only add Authorization header if API key is available if civitai_api_key: header["Authorization"] = f"Bearer {civitai_api_key}" else: print("โš ๏ธ Warning: CIVITAI_API_KEY not found in environment variables") print(f"Retrieving metadata by hash {file_hash}") # Try Civitai first try: response = requests.get( f"https://civitai.com/api/v1/model-versions/by-hash/{file_hash}", headers=header, timeout=15 ) if response.status_code == 200: civitai_data = {"civitai": response.json()} return civitai_data except Exception as e: print(f"Civitai API error: {e}") # Try civitaiarchive as fallback try: response = requests.get(f"https://civitaiarchive.com/api/sha256/{file_hash}", timeout=15) if response.status_code == 200: civitai_data = {"civitai": response.json()} return civitai_data except Exception as e: print(f"CivitaiArchive API error: {e}") return None def submit_to_datadrones(model_path: Path, metadata: Dict) -> bool: """Submit file to datadrones.com""" image_url = None model_versions = None base_model = None tags = None model_type = None # Start with model name if available description = "" model_name = None try: print(f"๐Ÿš€ Starting upload of {model_path.name} to datadrones.com...") model_name = (metadata.get("model_name") or metadata.get("civitai").get("name") or metadata.get("name")) # Add civitai description if available civitai = metadata.get("civitai", {}) is_nsfw = civitai.get("nsfw", False) if civitai and "modelVersions" in civitai: model_versions = civitai.get("modelVersions") # Add image if available if civitai and "images" in civitai and len(civitai["images"]) > 0: image_url = civitai["images"][0].get("url") if not image_url and model_versions: # try in model versions image_url = model_versions[0]["images"][0].get("url") if image_url: description += f"\n\n![Preview]({image_url})" if civitai and "type" in civitai: model_type = civitai.get("type") # could be version id api if civitai and "model" in civitai: model = civitai["model"] model_type = model.get("type") is_nsfw = model.get("nsfw") model_name = model.get("name") model_description = model.get("description") tags = model.get("tags") if model_description: description += f"\n\n{model_description}" if model_name: description = f"{model_name} \n" + description if civitai and "description" in civitai: if description: description += f"\n\n{civitai['description']}" if not description: description = "Possibly deleted" if not tags and metadata.get("tags"): tags = ",".join(metadata.get("tags", [])) if not tags and civitai and "tags" in civitai: tags = ",".join(civitai.get("tags", [])) if civitai and "baseModel" in civitai: base_model = civitai.get("baseModel") if civitai and "modelVersions" in civitai: model_versions = civitai.get("modelVersions") if model_versions: base_model = model_versions[0]["baseModel"] if base_model == "Hunyuan Video": base_model = "HunyuanVideo" # Prepare form data for submission data = { "description": description, "base_model": base_model if base_model else "Other", "tags": tags if tags else "", "model_type": model_type if model_type else "LoRA", "is_nsfw": is_nsfw, } print(f"๐Ÿ“‹ Upload data for {model_path.name}:") print(f" - Model name: {model_name}") print(f" - Model type: {data['model_type']}") print(f" - Base model: {data['base_model']}") print(f" - NSFW: {data['is_nsfw']}") print(f" - Tags: {data['tags']}") print(f" - Image URL: {image_url}") print(f" - Description length: {len(data['description'])} chars") print(f" - File size: {model_path.stat().st_size / (1024*1024):.1f} MB") # Submit to datadrones.com, bypass cloudflare with open(model_path, "rb") as f: files = {"file": f} headers = {'Host': 'up.datadrones.com'} print(f"๐ŸŒ Making POST request to https://up.datadrones.com/upload for {model_path.name}...") response = requests.post("https://up.datadrones.com/upload", files=files, data=data, headers=headers, timeout=300) print(f"๐Ÿ“ก Response for {model_path.name}:") print(f" - Status code: {response.status_code}") if response.status_code != 200: print(f" - Response text: {response.text}") return response.status_code == 200 except Exception as e: print(f"๐Ÿ’ฅ Exception during upload of {model_path.name}: {e}") traceback.print_exc() return False def extract_model_files(uploaded_files: List) -> List[Path]: """Extract model files from uploaded files, handling both direct files and zip archives""" model_files = [] temp_dir = Path(tempfile.mkdtemp()) # Supported model file extensions supported_extensions = {'.safetensors', '.pt', '.bin'} for file_info in uploaded_files: file_path = Path(file_info.name) if file_path.suffix.lower() in supported_extensions: # Direct model file dest_path = temp_dir / file_path.name shutil.copy2(file_path, dest_path) model_files.append(dest_path) elif file_path.suffix.lower() == '.zip': # Extract zip and find model files try: with zipfile.ZipFile(file_path, 'r') as zip_ref: zip_ref.extractall(temp_dir) # Find all model files in extracted content for extension in supported_extensions: for extracted_file in temp_dir.rglob(f"*{extension}"): model_files.append(extracted_file) except Exception as e: print(f"Error extracting {file_path}: {e}") return model_files def process_single_file(model_file: Path) -> ProcessResult: """Process a single model file""" try: print(f"\n๐Ÿ” Processing file: {model_file.name}") # Check file size (skip if over 4GB) file_size = model_file.stat().st_size if file_size > 4 * 1024 * 1024 * 1024: # 4GB print(f"โญ๏ธ Skipping {model_file.name} - over 4GB limit") return ProcessResult( filename=model_file.name, status="skipped", message="File over 4GB size limit" ) # Calculate hash print(f"๐Ÿ”ข Calculating hash for {model_file.name}...") file_hash = calculate_sha256(model_file) print(f"๐Ÿ“ Hash: {file_hash}") # Check if already exists in datadrones print(f"๐Ÿ” Checking if {file_hash} already exists on datadrones.com...") if check_hash_exists(file_hash): print(f"โญ๏ธ File {model_file.name} already exists on datadrones.com") return ProcessResult( filename=model_file.name, status="skipped", message="Already exists in datadrones.com", file_hash=file_hash ) # Find metadata by hash print(f"๐Ÿ” Looking up metadata for {file_hash}...") metadata = find_by_hash(file_hash) if not metadata: print(f"โŒ No metadata found for {model_file.name}") return ProcessResult( filename=model_file.name, status="error", message="No metadata found for this file", file_hash=file_hash ) print(f"โœ… Found metadata for {model_file.name}") # Submit to datadrones print(f"๐Ÿš€ Attempting upload of {model_file.name} to datadrones.com...") if submit_to_datadrones(model_file, metadata): print(f"โœ… Successfully uploaded {model_file.name} to datadrones.com") return ProcessResult( filename=model_file.name, status="uploaded", message="Successfully uploaded to datadrones.com", file_hash=file_hash ) else: print(f"โŒ Failed to upload {model_file.name} to datadrones.com") return ProcessResult( filename=model_file.name, status="error", message="Failed to upload to datadrones.com", file_hash=file_hash ) except Exception as e: print(f"๐Ÿ’ฅ Error processing {model_file.name}: {e}") traceback.print_exc() return ProcessResult( filename=model_file.name, status="error", message=f"Processing error: {str(e)}" ) def update_progress(current: int, total: int, status: str, file_result: ProcessResult = None, final_summary: str = None): """Update global progress tracking""" with upload_lock: upload_progress["current"] = current upload_progress["total"] = total upload_progress["status"] = status # Store final summary when processing is complete if final_summary: upload_progress["final_summary"] = final_summary if file_result: upload_progress["files_processed"].append({ "filename": file_result.filename, "status": file_result.status, "message": file_result.message, "hash": file_result.file_hash }) if file_result.status == "error": upload_progress["errors"].append(f"{file_result.filename}: {file_result.message}") def process_files_async(uploaded_files: List) -> str: """Process uploaded files asynchronously""" try: print(f"\n๐ŸŽฌ Starting bulk upload process...") # Reset progress with upload_lock: upload_progress.update({ "current": 0, "total": 0, "status": "Extracting files...", "files_processed": [], "errors": [], "final_summary": "" }) # Extract model files print(f"๐Ÿ“ฆ Extracting model files from uploaded content...") model_files = extract_model_files(uploaded_files) total_files = len(model_files) print(f"๐Ÿ“‹ Found {total_files} model files to process") for i, file in enumerate(model_files, 1): print(f" {i}. {file.name} ({file.stat().st_size / (1024*1024):.1f} MB)") if total_files == 0: print("โŒ No supported model files found") return "No supported model files (.safetensors, .pt, .bin) found in uploaded content." update_progress(0, total_files, "Processing files...") # Process files with thread pool for better performance print(f"๐Ÿ”„ Processing {total_files} files with ThreadPoolExecutor...") results = [] with ThreadPoolExecutor(max_workers=3) as executor: future_to_file = { executor.submit(process_single_file, file): file for file in model_files } for i, future in enumerate(as_completed(future_to_file), 1): result = future.result() results.append(result) print(f"๐Ÿ“Š Completed {i}/{total_files}: {result.filename} -> {result.status}") update_progress(i, total_files, f"Processed {i}/{total_files} files", result) # Generate summary uploaded_count = sum(1 for r in results if r.status == "uploaded") skipped_count = sum(1 for r in results if r.status == "skipped") error_count = sum(1 for r in results if r.status == "error") summary = f"""Processing Complete! Total files: {total_files} โœ… Uploaded: {uploaded_count} โญ๏ธ Skipped: {skipped_count} โŒ Errors: {error_count}""" # Update progress with final summary update_progress(total_files, total_files, "Complete", None, summary) print(f"๐ŸŽ‰ Bulk upload completed: {uploaded_count} uploaded, {skipped_count} skipped, {error_count} errors") # Cleanup temp files print(f"๐Ÿงน Cleaning up temporary files...") for file in model_files: try: if file.exists(): file.unlink() # Also cleanup parent temp directory if empty parent = file.parent if parent.exists() and not any(parent.iterdir()): parent.rmdir() except: pass return summary except Exception as e: error_msg = f"Processing failed: {str(e)}" print(f"๐Ÿ’ฅ Bulk processing failed: {e}") traceback.print_exc() update_progress(0, 0, error_msg, None, error_msg) return error_msg def get_progress_update(): """Get current progress status""" with upload_lock: if upload_progress["total"] == 0: return "No active uploads", "" current = upload_progress["current"] total = upload_progress["total"] status = upload_progress["status"] # Show final summary if processing is complete if current == total and total > 0 and "final_summary" in upload_progress: progress_text = upload_progress["final_summary"] else: progress_text = f"Progress: {current}/{total} - {status}" # Build detailed log log_lines = [] for file_info in upload_progress["files_processed"][-10:]: # Show last 10 status_emoji = {"uploaded": "โœ…", "skipped": "โญ๏ธ", "error": "โŒ"}.get(file_info["status"], "?") log_lines.append(f"{status_emoji} {file_info['filename']}: {file_info['message']}") if upload_progress["errors"]: log_lines.append(f"\nRecent Errors ({len(upload_progress['errors'])}):") log_lines.extend(upload_progress["errors"][-5:]) # Show last 5 errors detailed_log = "\n".join(log_lines) return progress_text, detailed_log def start_upload(files): """Start the upload process in a separate thread""" if not files: return "No files selected", "" # Start processing in background thread thread = threading.Thread(target=process_files_async, args=(files,)) thread.daemon = True thread.start() return "Upload started! Check progress below...", "" # Create Gradio interface def create_interface(): with gr.Blocks(title="DataDrones Bulk Uploader", theme=gr.themes.Soft()) as iface: gr.Markdown(""" # ๐Ÿš DataDrones Bulk Uploader Upload multiple model files (`.safetensors`, `.pt`, `.bin`) or zip archives containing model files to datadrones.com. **Features:** - Supports direct model file uploads (.safetensors, .pt, .bin) and zip archives - Automatic hash checking to avoid duplicates - Metadata retrieval from Civitai and other sources - Real-time progress tracking - Concurrent processing for faster uploads """) with gr.Row(): with gr.Column(scale=2): file_input = gr.File( label="Select model files (.safetensors, .pt, .bin) or .zip archives", file_count="multiple", file_types=[".safetensors", ".pt", ".bin", ".zip"] ) upload_btn = gr.Button("๐Ÿš€ Start Upload", variant="primary", size="lg") with gr.Column(scale=1): gr.Markdown(""" ### Instructions: 1. Select multiple model files (`.safetensors`, `.pt`, `.bin`) directly, or 2. Upload `.zip` archives containing model files 3. Click "Start Upload" to begin processing 4. Monitor progress in real-time below **Note:** Files over 4GB will be skipped. """) gr.Markdown("---") with gr.Row(): with gr.Column(): progress_display = gr.Textbox( label="Upload Progress", value="Ready to upload", interactive=False ) refresh_btn = gr.Button("๐Ÿ”„ Refresh Progress", size="sm") detailed_log = gr.Textbox( label="Detailed Log", value="", lines=15, interactive=False ) # Set up event handlers upload_btn.click( fn=start_upload, inputs=[file_input], outputs=[progress_display, detailed_log] ) # Manual refresh for progress updates refresh_btn.click( fn=get_progress_update, outputs=[progress_display, detailed_log] ) return iface if __name__ == "__main__": app = create_interface() app.queue(max_size=10) # Enable queuing for background processing app.launch( server_name="0.0.0.0", server_port=7860, share=False )