Spaces:
Running
Running
Abe
commited on
Commit
Β·
ef6b90e
1
Parent(s):
f6ee34b
initial commit
Browse files- .gitignore +68 -0
- app.py +539 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Reference files (not to be checked in)
|
2 |
+
bulk_import.py
|
3 |
+
|
4 |
+
# Python
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
*.so
|
9 |
+
.Python
|
10 |
+
build/
|
11 |
+
develop-eggs/
|
12 |
+
dist/
|
13 |
+
downloads/
|
14 |
+
eggs/
|
15 |
+
.eggs/
|
16 |
+
lib/
|
17 |
+
lib64/
|
18 |
+
parts/
|
19 |
+
sdist/
|
20 |
+
var/
|
21 |
+
wheels/
|
22 |
+
pip-wheel-metadata/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# Virtual environments
|
30 |
+
.env
|
31 |
+
.venv
|
32 |
+
env/
|
33 |
+
venv/
|
34 |
+
ENV/
|
35 |
+
env.bak/
|
36 |
+
venv.bak/
|
37 |
+
|
38 |
+
# IDE
|
39 |
+
.idea/
|
40 |
+
.vscode/
|
41 |
+
*.swp
|
42 |
+
*.swo
|
43 |
+
*~
|
44 |
+
|
45 |
+
# OS
|
46 |
+
.DS_Store
|
47 |
+
.DS_Store?
|
48 |
+
._*
|
49 |
+
.Spotlight-V100
|
50 |
+
.Trashes
|
51 |
+
ehthumbs.db
|
52 |
+
Thumbs.db
|
53 |
+
|
54 |
+
# Temporary files
|
55 |
+
*.tmp
|
56 |
+
*.temp
|
57 |
+
temp/
|
58 |
+
tmp/
|
59 |
+
|
60 |
+
# Logs
|
61 |
+
*.log
|
62 |
+
logs/
|
63 |
+
|
64 |
+
# Environment variables
|
65 |
+
.env.local
|
66 |
+
.env.development.local
|
67 |
+
.env.test.local
|
68 |
+
.env.production.local
|
app.py
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import hashlib
|
5 |
+
import json
|
6 |
+
import traceback
|
7 |
+
import zipfile
|
8 |
+
import tempfile
|
9 |
+
import shutil
|
10 |
+
from pathlib import Path
|
11 |
+
import requests
|
12 |
+
import threading
|
13 |
+
import time
|
14 |
+
from typing import List, Dict, Optional, Tuple
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
17 |
+
|
18 |
+
# Global variables for progress tracking
|
19 |
+
upload_progress = {"current": 0, "total": 0, "status": "", "files_processed": [], "errors": [], "final_summary": ""}
|
20 |
+
upload_lock = threading.Lock()
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class ProcessResult:
|
24 |
+
filename: str
|
25 |
+
status: str # "skipped", "uploaded", "error"
|
26 |
+
message: str
|
27 |
+
file_hash: Optional[str] = None
|
28 |
+
|
29 |
+
def calculate_sha256(filepath: Path) -> str:
|
30 |
+
"""Calculate SHA256 hash of a file"""
|
31 |
+
sha256_hash = hashlib.sha256()
|
32 |
+
with open(filepath, "rb") as f:
|
33 |
+
# Read in 100MB chunks for better performance
|
34 |
+
for byte_block in iter(lambda: f.read(104857600), b""):
|
35 |
+
sha256_hash.update(byte_block)
|
36 |
+
return sha256_hash.hexdigest()
|
37 |
+
|
38 |
+
def check_hash_exists(file_hash: str) -> bool:
|
39 |
+
"""Check if file hash already exists in datadrones.com"""
|
40 |
+
try:
|
41 |
+
hash_request = requests.get(
|
42 |
+
f"https://dl.datadrones.com/api/model/sha256sum/{file_hash}",
|
43 |
+
timeout=10
|
44 |
+
)
|
45 |
+
return hash_request.status_code == 200
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error checking hash existence: {e}")
|
48 |
+
return False
|
49 |
+
|
50 |
+
def find_by_hash(file_hash: str) -> Optional[Dict]:
|
51 |
+
"""Find metadata by hash from Civitai and other sources"""
|
52 |
+
# Get Civitai API key from environment variable (HuggingFace Spaces secret)
|
53 |
+
civitai_api_key = os.getenv("CIVITAI_API_KEY")
|
54 |
+
|
55 |
+
header = {
|
56 |
+
"Content-Type": "application/json",
|
57 |
+
}
|
58 |
+
|
59 |
+
# Only add Authorization header if API key is available
|
60 |
+
if civitai_api_key:
|
61 |
+
header["Authorization"] = f"Bearer {civitai_api_key}"
|
62 |
+
else:
|
63 |
+
print("β οΈ Warning: CIVITAI_API_KEY not found in environment variables")
|
64 |
+
|
65 |
+
print(f"Retrieving metadata by hash {file_hash}")
|
66 |
+
|
67 |
+
# Try Civitai first
|
68 |
+
try:
|
69 |
+
response = requests.get(
|
70 |
+
f"https://civitai.com/api/v1/model-versions/by-hash/{file_hash}",
|
71 |
+
headers=header,
|
72 |
+
timeout=15
|
73 |
+
)
|
74 |
+
if response.status_code == 200:
|
75 |
+
civitai_data = {"civitai": response.json()}
|
76 |
+
return civitai_data
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Civitai API error: {e}")
|
79 |
+
|
80 |
+
# Try civitaiarchive as fallback
|
81 |
+
try:
|
82 |
+
response = requests.get(f"https://civitaiarchive.com/api/sha256/{file_hash}", timeout=15)
|
83 |
+
if response.status_code == 200:
|
84 |
+
civitai_data = {"civitai": response.json()}
|
85 |
+
return civitai_data
|
86 |
+
except Exception as e:
|
87 |
+
print(f"CivitaiArchive API error: {e}")
|
88 |
+
|
89 |
+
return None
|
90 |
+
|
91 |
+
def submit_to_datadrones(model_path: Path, metadata: Dict) -> bool:
|
92 |
+
"""Submit file to datadrones.com"""
|
93 |
+
try:
|
94 |
+
print(f"π Starting upload of {model_path.name} to datadrones.com...")
|
95 |
+
|
96 |
+
# Extract metadata fields
|
97 |
+
description = ""
|
98 |
+
model_name = None
|
99 |
+
base_model = None
|
100 |
+
tags = None
|
101 |
+
model_type = None
|
102 |
+
is_nsfw = False
|
103 |
+
|
104 |
+
# Process metadata structure
|
105 |
+
model_name = (metadata.get("model_name") or
|
106 |
+
metadata.get("civitai", {}).get("name") or
|
107 |
+
metadata.get("name"))
|
108 |
+
|
109 |
+
civitai = metadata.get("civitai", {})
|
110 |
+
|
111 |
+
if civitai:
|
112 |
+
is_nsfw = civitai.get("nsfw", False)
|
113 |
+
|
114 |
+
# Handle model versions
|
115 |
+
if "modelVersions" in civitai:
|
116 |
+
model_versions = civitai.get("modelVersions")
|
117 |
+
if model_versions:
|
118 |
+
base_model = model_versions[0].get("baseModel")
|
119 |
+
|
120 |
+
# Handle direct model data
|
121 |
+
if "model" in civitai:
|
122 |
+
model = civitai["model"]
|
123 |
+
model_type = model.get("type")
|
124 |
+
is_nsfw = model.get("nsfw", False)
|
125 |
+
model_name = model.get("name")
|
126 |
+
model_description = model.get("description")
|
127 |
+
tags = model.get("tags")
|
128 |
+
if model_description:
|
129 |
+
description += f"{model_description}\n"
|
130 |
+
|
131 |
+
if "type" in civitai:
|
132 |
+
model_type = civitai.get("type")
|
133 |
+
|
134 |
+
if "baseModel" in civitai:
|
135 |
+
base_model = civitai.get("baseModel")
|
136 |
+
if base_model == "Hunyuan Video":
|
137 |
+
base_model = "HunyuanVideo"
|
138 |
+
|
139 |
+
if "description" in civitai:
|
140 |
+
description += f"{civitai['description']}\n"
|
141 |
+
|
142 |
+
if model_name:
|
143 |
+
description = f"{model_name}\n{description}"
|
144 |
+
|
145 |
+
if not description.strip():
|
146 |
+
description = "Model uploaded via bulk uploader"
|
147 |
+
|
148 |
+
# Handle tags
|
149 |
+
if not tags and metadata.get("tags"):
|
150 |
+
tags = ",".join(metadata.get("tags", []))
|
151 |
+
elif isinstance(tags, list):
|
152 |
+
tags = ",".join(tags)
|
153 |
+
|
154 |
+
# Prepare form data
|
155 |
+
data = {
|
156 |
+
"description": description.strip(),
|
157 |
+
"base_model": base_model if base_model else "Other",
|
158 |
+
"tags": tags if tags else "",
|
159 |
+
"model_type": model_type if model_type else "LoRA",
|
160 |
+
"is_nsfw": is_nsfw,
|
161 |
+
}
|
162 |
+
|
163 |
+
print(f"π Upload data for {model_path.name}:")
|
164 |
+
print(f" - Model name: {model_name}")
|
165 |
+
print(f" - Model type: {data['model_type']}")
|
166 |
+
print(f" - Base model: {data['base_model']}")
|
167 |
+
print(f" - NSFW: {data['is_nsfw']}")
|
168 |
+
print(f" - Tags: {data['tags']}")
|
169 |
+
print(f" - Description length: {len(data['description'])} chars")
|
170 |
+
print(f" - File size: {model_path.stat().st_size / (1024*1024):.1f} MB")
|
171 |
+
|
172 |
+
with open(model_path, "rb") as f:
|
173 |
+
files = {"file": f}
|
174 |
+
headers = {'Host': 'up.datadrones.com'}
|
175 |
+
|
176 |
+
print(f"π Making POST request to https://up.datadrones.com/upload for {model_path.name}...")
|
177 |
+
|
178 |
+
response = requests.post(
|
179 |
+
"https://up.datadrones.com/upload",
|
180 |
+
files=files,
|
181 |
+
data=data,
|
182 |
+
headers=headers,
|
183 |
+
timeout=300 # 5 minute timeout for large files
|
184 |
+
)
|
185 |
+
|
186 |
+
print(f"π‘ Response for {model_path.name}:")
|
187 |
+
print(f" - Status code: {response.status_code}")
|
188 |
+
print(f" - Response headers: {dict(response.headers)}")
|
189 |
+
print(f" - Response text (first 500 chars): {response.text[:500]}")
|
190 |
+
|
191 |
+
success = response.status_code == 200
|
192 |
+
if success:
|
193 |
+
print(f"β
Upload successful for {model_path.name}")
|
194 |
+
else:
|
195 |
+
print(f"β Upload failed for {model_path.name} - Status: {response.status_code}")
|
196 |
+
print(f" - Full response: {response.text}")
|
197 |
+
|
198 |
+
return success
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"π₯ Exception during upload of {model_path.name}: {e}")
|
202 |
+
traceback.print_exc()
|
203 |
+
return False
|
204 |
+
|
205 |
+
def extract_model_files(uploaded_files: List) -> List[Path]:
|
206 |
+
"""Extract model files from uploaded files, handling both direct files and zip archives"""
|
207 |
+
model_files = []
|
208 |
+
temp_dir = Path(tempfile.mkdtemp())
|
209 |
+
|
210 |
+
# Supported model file extensions
|
211 |
+
supported_extensions = {'.safetensors', '.pt', '.bin'}
|
212 |
+
|
213 |
+
for file_info in uploaded_files:
|
214 |
+
file_path = Path(file_info.name)
|
215 |
+
|
216 |
+
if file_path.suffix.lower() in supported_extensions:
|
217 |
+
# Direct model file
|
218 |
+
dest_path = temp_dir / file_path.name
|
219 |
+
shutil.copy2(file_path, dest_path)
|
220 |
+
model_files.append(dest_path)
|
221 |
+
|
222 |
+
elif file_path.suffix.lower() == '.zip':
|
223 |
+
# Extract zip and find model files
|
224 |
+
try:
|
225 |
+
with zipfile.ZipFile(file_path, 'r') as zip_ref:
|
226 |
+
zip_ref.extractall(temp_dir)
|
227 |
+
|
228 |
+
# Find all model files in extracted content
|
229 |
+
for extension in supported_extensions:
|
230 |
+
for extracted_file in temp_dir.rglob(f"*{extension}"):
|
231 |
+
model_files.append(extracted_file)
|
232 |
+
|
233 |
+
except Exception as e:
|
234 |
+
print(f"Error extracting {file_path}: {e}")
|
235 |
+
|
236 |
+
return model_files
|
237 |
+
|
238 |
+
def process_single_file(model_file: Path) -> ProcessResult:
|
239 |
+
"""Process a single model file"""
|
240 |
+
try:
|
241 |
+
print(f"\nπ Processing file: {model_file.name}")
|
242 |
+
|
243 |
+
# Check file size (skip if over 4GB)
|
244 |
+
file_size = model_file.stat().st_size
|
245 |
+
if file_size > 4 * 1024 * 1024 * 1024: # 4GB
|
246 |
+
print(f"βοΈ Skipping {model_file.name} - over 4GB limit")
|
247 |
+
return ProcessResult(
|
248 |
+
filename=model_file.name,
|
249 |
+
status="skipped",
|
250 |
+
message="File over 4GB size limit"
|
251 |
+
)
|
252 |
+
|
253 |
+
# Calculate hash
|
254 |
+
print(f"π’ Calculating hash for {model_file.name}...")
|
255 |
+
file_hash = calculate_sha256(model_file)
|
256 |
+
print(f"π Hash: {file_hash}")
|
257 |
+
|
258 |
+
# Check if already exists in datadrones
|
259 |
+
print(f"π Checking if {file_hash} already exists on datadrones.com...")
|
260 |
+
if check_hash_exists(file_hash):
|
261 |
+
print(f"βοΈ File {model_file.name} already exists on datadrones.com")
|
262 |
+
return ProcessResult(
|
263 |
+
filename=model_file.name,
|
264 |
+
status="skipped",
|
265 |
+
message="Already exists in datadrones.com",
|
266 |
+
file_hash=file_hash
|
267 |
+
)
|
268 |
+
|
269 |
+
# Find metadata by hash
|
270 |
+
print(f"π Looking up metadata for {file_hash}...")
|
271 |
+
metadata = find_by_hash(file_hash)
|
272 |
+
|
273 |
+
if not metadata:
|
274 |
+
print(f"β No metadata found for {model_file.name}")
|
275 |
+
return ProcessResult(
|
276 |
+
filename=model_file.name,
|
277 |
+
status="error",
|
278 |
+
message="No metadata found for this file",
|
279 |
+
file_hash=file_hash
|
280 |
+
)
|
281 |
+
|
282 |
+
print(f"β
Found metadata for {model_file.name}")
|
283 |
+
|
284 |
+
# Submit to datadrones
|
285 |
+
print(f"π Attempting upload of {model_file.name} to datadrones.com...")
|
286 |
+
if submit_to_datadrones(model_file, metadata):
|
287 |
+
print(f"β
Successfully uploaded {model_file.name} to datadrones.com")
|
288 |
+
return ProcessResult(
|
289 |
+
filename=model_file.name,
|
290 |
+
status="uploaded",
|
291 |
+
message="Successfully uploaded to datadrones.com",
|
292 |
+
file_hash=file_hash
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
print(f"β Failed to upload {model_file.name} to datadrones.com")
|
296 |
+
return ProcessResult(
|
297 |
+
filename=model_file.name,
|
298 |
+
status="error",
|
299 |
+
message="Failed to upload to datadrones.com",
|
300 |
+
file_hash=file_hash
|
301 |
+
)
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
print(f"π₯ Error processing {model_file.name}: {e}")
|
305 |
+
traceback.print_exc()
|
306 |
+
return ProcessResult(
|
307 |
+
filename=model_file.name,
|
308 |
+
status="error",
|
309 |
+
message=f"Processing error: {str(e)}"
|
310 |
+
)
|
311 |
+
|
312 |
+
def update_progress(current: int, total: int, status: str, file_result: ProcessResult = None, final_summary: str = None):
|
313 |
+
"""Update global progress tracking"""
|
314 |
+
with upload_lock:
|
315 |
+
upload_progress["current"] = current
|
316 |
+
upload_progress["total"] = total
|
317 |
+
upload_progress["status"] = status
|
318 |
+
|
319 |
+
# Store final summary when processing is complete
|
320 |
+
if final_summary:
|
321 |
+
upload_progress["final_summary"] = final_summary
|
322 |
+
|
323 |
+
if file_result:
|
324 |
+
upload_progress["files_processed"].append({
|
325 |
+
"filename": file_result.filename,
|
326 |
+
"status": file_result.status,
|
327 |
+
"message": file_result.message,
|
328 |
+
"hash": file_result.file_hash
|
329 |
+
})
|
330 |
+
|
331 |
+
if file_result.status == "error":
|
332 |
+
upload_progress["errors"].append(f"{file_result.filename}: {file_result.message}")
|
333 |
+
|
334 |
+
def process_files_async(uploaded_files: List) -> str:
|
335 |
+
"""Process uploaded files asynchronously"""
|
336 |
+
try:
|
337 |
+
print(f"\n㪠Starting bulk upload process...")
|
338 |
+
|
339 |
+
# Reset progress
|
340 |
+
with upload_lock:
|
341 |
+
upload_progress.update({
|
342 |
+
"current": 0,
|
343 |
+
"total": 0,
|
344 |
+
"status": "Extracting files...",
|
345 |
+
"files_processed": [],
|
346 |
+
"errors": [],
|
347 |
+
"final_summary": ""
|
348 |
+
})
|
349 |
+
|
350 |
+
# Extract model files
|
351 |
+
print(f"π¦ Extracting model files from uploaded content...")
|
352 |
+
model_files = extract_model_files(uploaded_files)
|
353 |
+
total_files = len(model_files)
|
354 |
+
|
355 |
+
print(f"π Found {total_files} model files to process")
|
356 |
+
for i, file in enumerate(model_files, 1):
|
357 |
+
print(f" {i}. {file.name} ({file.stat().st_size / (1024*1024):.1f} MB)")
|
358 |
+
|
359 |
+
if total_files == 0:
|
360 |
+
print("β No supported model files found")
|
361 |
+
return "No supported model files (.safetensors, .pt, .bin) found in uploaded content."
|
362 |
+
|
363 |
+
update_progress(0, total_files, "Processing files...")
|
364 |
+
|
365 |
+
# Process files with thread pool for better performance
|
366 |
+
print(f"π Processing {total_files} files with ThreadPoolExecutor...")
|
367 |
+
results = []
|
368 |
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
369 |
+
future_to_file = {
|
370 |
+
executor.submit(process_single_file, file): file
|
371 |
+
for file in model_files
|
372 |
+
}
|
373 |
+
|
374 |
+
for i, future in enumerate(as_completed(future_to_file), 1):
|
375 |
+
result = future.result()
|
376 |
+
results.append(result)
|
377 |
+
print(f"π Completed {i}/{total_files}: {result.filename} -> {result.status}")
|
378 |
+
update_progress(i, total_files, f"Processed {i}/{total_files} files", result)
|
379 |
+
|
380 |
+
# Generate summary
|
381 |
+
uploaded_count = sum(1 for r in results if r.status == "uploaded")
|
382 |
+
skipped_count = sum(1 for r in results if r.status == "skipped")
|
383 |
+
error_count = sum(1 for r in results if r.status == "error")
|
384 |
+
|
385 |
+
summary = f"""Processing Complete!
|
386 |
+
|
387 |
+
Total files: {total_files}
|
388 |
+
β
Uploaded: {uploaded_count}
|
389 |
+
βοΈ Skipped: {skipped_count}
|
390 |
+
β Errors: {error_count}"""
|
391 |
+
|
392 |
+
# Update progress with final summary
|
393 |
+
update_progress(total_files, total_files, "Complete", None, summary)
|
394 |
+
|
395 |
+
print(f"π Bulk upload completed: {uploaded_count} uploaded, {skipped_count} skipped, {error_count} errors")
|
396 |
+
|
397 |
+
# Cleanup temp files
|
398 |
+
print(f"π§Ή Cleaning up temporary files...")
|
399 |
+
for file in model_files:
|
400 |
+
try:
|
401 |
+
if file.exists():
|
402 |
+
file.unlink()
|
403 |
+
# Also cleanup parent temp directory if empty
|
404 |
+
parent = file.parent
|
405 |
+
if parent.exists() and not any(parent.iterdir()):
|
406 |
+
parent.rmdir()
|
407 |
+
except:
|
408 |
+
pass
|
409 |
+
|
410 |
+
return summary
|
411 |
+
|
412 |
+
except Exception as e:
|
413 |
+
error_msg = f"Processing failed: {str(e)}"
|
414 |
+
print(f"π₯ Bulk processing failed: {e}")
|
415 |
+
traceback.print_exc()
|
416 |
+
update_progress(0, 0, error_msg, None, error_msg)
|
417 |
+
return error_msg
|
418 |
+
|
419 |
+
def get_progress_update():
|
420 |
+
"""Get current progress status"""
|
421 |
+
with upload_lock:
|
422 |
+
if upload_progress["total"] == 0:
|
423 |
+
return "No active uploads", ""
|
424 |
+
|
425 |
+
current = upload_progress["current"]
|
426 |
+
total = upload_progress["total"]
|
427 |
+
status = upload_progress["status"]
|
428 |
+
|
429 |
+
# Show final summary if processing is complete
|
430 |
+
if current == total and total > 0 and "final_summary" in upload_progress:
|
431 |
+
progress_text = upload_progress["final_summary"]
|
432 |
+
else:
|
433 |
+
progress_text = f"Progress: {current}/{total} - {status}"
|
434 |
+
|
435 |
+
# Build detailed log
|
436 |
+
log_lines = []
|
437 |
+
for file_info in upload_progress["files_processed"][-10:]: # Show last 10
|
438 |
+
status_emoji = {"uploaded": "β
", "skipped": "βοΈ", "error": "β"}.get(file_info["status"], "?")
|
439 |
+
log_lines.append(f"{status_emoji} {file_info['filename']}: {file_info['message']}")
|
440 |
+
|
441 |
+
if upload_progress["errors"]:
|
442 |
+
log_lines.append(f"\nRecent Errors ({len(upload_progress['errors'])}):")
|
443 |
+
log_lines.extend(upload_progress["errors"][-5:]) # Show last 5 errors
|
444 |
+
|
445 |
+
detailed_log = "\n".join(log_lines)
|
446 |
+
|
447 |
+
return progress_text, detailed_log
|
448 |
+
|
449 |
+
def start_upload(files):
|
450 |
+
"""Start the upload process in a separate thread"""
|
451 |
+
if not files:
|
452 |
+
return "No files selected", ""
|
453 |
+
|
454 |
+
# Start processing in background thread
|
455 |
+
thread = threading.Thread(target=process_files_async, args=(files,))
|
456 |
+
thread.daemon = True
|
457 |
+
thread.start()
|
458 |
+
|
459 |
+
return "Upload started! Check progress below...", ""
|
460 |
+
|
461 |
+
# Create Gradio interface
|
462 |
+
def create_interface():
|
463 |
+
with gr.Blocks(title="DataDrones Bulk Uploader", theme=gr.themes.Soft()) as iface:
|
464 |
+
gr.Markdown("""
|
465 |
+
# π DataDrones Bulk Uploader
|
466 |
+
|
467 |
+
Upload multiple model files (`.safetensors`, `.pt`, `.bin`) or zip archives containing model files to datadrones.com.
|
468 |
+
|
469 |
+
**Features:**
|
470 |
+
- Supports direct model file uploads (.safetensors, .pt, .bin) and zip archives
|
471 |
+
- Automatic hash checking to avoid duplicates
|
472 |
+
- Metadata retrieval from Civitai and other sources
|
473 |
+
- Real-time progress tracking
|
474 |
+
- Concurrent processing for faster uploads
|
475 |
+
""")
|
476 |
+
|
477 |
+
with gr.Row():
|
478 |
+
with gr.Column(scale=2):
|
479 |
+
file_input = gr.File(
|
480 |
+
label="Select model files (.safetensors, .pt, .bin) or .zip archives",
|
481 |
+
file_count="multiple",
|
482 |
+
file_types=[".safetensors", ".pt", ".bin", ".zip"]
|
483 |
+
)
|
484 |
+
|
485 |
+
upload_btn = gr.Button("π Start Upload", variant="primary", size="lg")
|
486 |
+
|
487 |
+
with gr.Column(scale=1):
|
488 |
+
gr.Markdown("""
|
489 |
+
### Instructions:
|
490 |
+
1. Select multiple model files (`.safetensors`, `.pt`, `.bin`) directly, or
|
491 |
+
2. Upload `.zip` archives containing model files
|
492 |
+
3. Click "Start Upload" to begin processing
|
493 |
+
4. Monitor progress in real-time below
|
494 |
+
|
495 |
+
**Note:** Files over 4GB will be skipped.
|
496 |
+
""")
|
497 |
+
|
498 |
+
gr.Markdown("---")
|
499 |
+
|
500 |
+
with gr.Row():
|
501 |
+
with gr.Column():
|
502 |
+
progress_display = gr.Textbox(
|
503 |
+
label="Upload Progress",
|
504 |
+
value="Ready to upload",
|
505 |
+
interactive=False
|
506 |
+
)
|
507 |
+
|
508 |
+
refresh_btn = gr.Button("π Refresh Progress", size="sm")
|
509 |
+
|
510 |
+
detailed_log = gr.Textbox(
|
511 |
+
label="Detailed Log",
|
512 |
+
value="",
|
513 |
+
lines=15,
|
514 |
+
interactive=False
|
515 |
+
)
|
516 |
+
|
517 |
+
# Set up event handlers
|
518 |
+
upload_btn.click(
|
519 |
+
fn=start_upload,
|
520 |
+
inputs=[file_input],
|
521 |
+
outputs=[progress_display, detailed_log]
|
522 |
+
)
|
523 |
+
|
524 |
+
# Manual refresh for progress updates
|
525 |
+
refresh_btn.click(
|
526 |
+
fn=get_progress_update,
|
527 |
+
outputs=[progress_display, detailed_log]
|
528 |
+
)
|
529 |
+
|
530 |
+
return iface
|
531 |
+
|
532 |
+
if __name__ == "__main__":
|
533 |
+
app = create_interface()
|
534 |
+
app.queue(max_size=10) # Enable queuing for background processing
|
535 |
+
app.launch(
|
536 |
+
server_name="0.0.0.0",
|
537 |
+
server_port=7860,
|
538 |
+
share=False
|
539 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=5.0.0
|
2 |
+
requests>=2.28.0
|
3 |
+
pathlib
|