Spaces:
Sleeping
Sleeping
File size: 18,609 Bytes
f368eec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
"""Biomedical Language Model for drug interaction analysis."""
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import re
class BiomedicalLLM:
"""Class to handle biomedical language model inference"""
def __init__(self, model_name="stanford-crfm/BioMedLM"):
"""
Initialize the Biomedical Language Model
Args:
model_name: The name of the model to use (default: BioMedLM)
Options include:
- "stanford-crfm/BioMedLM"
- "microsoft/biogpt"
"""
self.model_name = model_name
try:
print(f"Loading {model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set pad token if it doesn't exist
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
pad_token_id=self.tokenizer.pad_token_id
)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Model loaded successfully on {self.device}")
except Exception as e:
print(f"Error loading model: {e}")
print("Falling back to API-based approach or stub implementation")
self.tokenizer = None
self.model = None
def extract_ddi_from_literature(self, drug1, drug2):
"""
Extract drug-drug interaction information from biomedical literature
Args:
drug1: Name of the first drug
drug2: Name of the second drug
Returns:
A list of extracted interactions with evidence
"""
if self.model is None or self.tokenizer is None:
# Fallback behavior if model failed to load
return self._fallback_extract_ddi(drug1, drug2)
try:
# Construct a prompt for the model
prompt = f"""
Analyze the scientific literature for interactions between {drug1} and {drug2}.
Include the following information:
1. Description of the interaction mechanism
2. Severity (Mild, Moderate, Severe)
3. Clinical significance
4. Management recommendations
Format the response as JSON with the following structure:
{{
"interactions": [
{{
"description": "Description of mechanism",
"severity": "Severity level",
"evidence": "Evidence from literature",
"management": "Management recommendation"
}}
]
}}
"""
# Generate completion with proper attention mask
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
# Ensure attention mask is set properly
if 'attention_mask' not in inputs:
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
# Generate with appropriate parameters
with torch.no_grad():
outputs = self.model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
# Decode the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the JSON part of the response
json_match = re.search(r'({[\s\S]*})', response)
if json_match:
json_str = json_match.group(1)
try:
return json.loads(json_str)
except:
# If JSON parsing fails, return a structured response anyway
return self._extract_structured_info(response, drug1, drug2)
else:
# If no JSON found, extract structured information
return self._extract_structured_info(response, drug1, drug2)
except Exception as e:
print(f"Error in LLM inference: {e}")
return self._fallback_extract_ddi(drug1, drug2)
def _extract_structured_info(self, text, drug1, drug2):
"""Extract structured information from text if JSON parsing fails"""
# Try to identify descriptions, severity, etc.
severity_match = re.search(r'(mild|moderate|severe)', text.lower())
severity = severity_match.group(1).capitalize() if severity_match else "Unknown"
# Default structured response
return {
"interactions": [
{
"description": f"Potential interaction between {drug1} and {drug2} identified in literature",
"severity": severity,
"evidence": "Based on biomedical literature analysis",
"management": "Consult healthcare provider for specific guidance"
}
]
}
def _fallback_extract_ddi(self, drug1, drug2):
"""Fallback method when model is not available"""
# Return a structured response with disclaimer
return {
"interactions": [
{
"description": f"Potential interaction between {drug1} and {drug2}",
"severity": "Unknown",
"evidence": "Please consult literature for evidence",
"management": "Consult healthcare provider for guidance"
}
],
"note": "Biomedical model not available - using fallback information"
}
def analyze_clinical_notes(self, clinical_text):
"""
Extract drug mentions and potential interactions from clinical notes
Args:
clinical_text: The clinical notes text to analyze
Returns:
A dictionary with extracted drugs and potential interactions
"""
if self.model is None or self.tokenizer is None:
# Fallback behavior if model failed to load
return self._fallback_analyze_clinical_notes(clinical_text)
try:
# Construct a prompt for the model
prompt = f"""
Extract all medication mentions and potential drug interactions from the following clinical note:
{clinical_text}
Format the response as JSON with the following structure:
{{
"medications": [
{{
"name": "Drug name",
"dosage": "Dosage if mentioned",
"frequency": "Frequency if mentioned"
}}
],
"potential_interactions": [
{{
"drug1": "First drug name",
"drug2": "Second drug name",
"concern": "Description of potential interaction"
}}
]
}}
"""
# Generate completion with proper attention mask
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
# Ensure attention mask is set properly
if 'attention_mask' not in inputs:
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
# Generate with appropriate parameters
with torch.no_grad():
outputs = self.model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
# Decode the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the JSON part of the response
json_match = re.search(r'({[\s\S]*})', response)
if json_match:
json_str = json_match.group(1)
try:
return json.loads(json_str)
except:
# If JSON parsing fails, return a structured response anyway
return self._extract_medications_from_text(response)
else:
# If no JSON found, extract structured information
return self._extract_medications_from_text(response)
except Exception as e:
print(f"Error in LLM inference: {e}")
return self._fallback_analyze_clinical_notes(clinical_text)
def _extract_medications_from_text(self, text):
"""Extract medication mentions from text if JSON parsing fails"""
# Simple regex-based extraction
drug_patterns = [
r'([A-Za-z]+)\s+(\d+\s*mg)',
r'([A-Za-z]+)\s+(\d+\s*mcg)',
r'([A-Za-z]+)\s+(\d+\s*ml)',
r'([A-Za-z]+)\s+(\d+\s*tablet)',
r'prescribe[d]?\s+([A-Za-z]+)',
r'taking\s+([A-Za-z]+)',
r'administer[ed]?\s+([A-Za-z]+)'
]
medications = []
for pattern in drug_patterns:
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
if len(match.groups()) > 1:
drug_name = match.group(1)
dosage = match.group(2)
medications.append({"name": drug_name, "dosage": dosage, "frequency": "Not specified"})
else:
drug_name = match.group(1)
medications.append({"name": drug_name, "dosage": "Not specified", "frequency": "Not specified"})
# Return structured data
return {
"medications": medications,
"potential_interactions": []
}
def _fallback_analyze_clinical_notes(self, clinical_text):
"""Fallback method for clinical note analysis when model is not available"""
# Return a structured response with disclaimer
return {
"medications": [],
"potential_interactions": [],
"note": "Biomedical model not available - please review clinical notes manually"
}
def get_drug_information(self, drug_name):
"""
Get detailed information about a specific drug
Args:
drug_name: Name of the drug
Returns:
A dictionary with drug information
"""
if self.model is None or self.tokenizer is None:
# Fallback behavior if model failed to load
return self._fallback_drug_information(drug_name)
try:
# Construct a prompt for the model
prompt = f"""
Provide comprehensive information about the medication {drug_name}, including:
1. Drug class
2. Mechanism of action
3. Common indications
4. Common side effects
5. Common drug interactions
6. Contraindications
Format the response as JSON with the following structure:
{{
"drug_name": "{drug_name}",
"drug_class": "Drug class",
"mechanism": "Mechanism of action",
"indications": ["Indication 1", "Indication 2"],
"side_effects": ["Side effect 1", "Side effect 2"],
"common_interactions": ["Drug 1", "Drug 2"],
"contraindications": ["Contraindication 1", "Contraindication 2"]
}}
"""
# Generate completion with proper attention mask
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
# Ensure attention mask is set properly
if 'attention_mask' not in inputs:
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
# Generate with appropriate parameters
with torch.no_grad():
outputs = self.model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
# Decode the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the JSON part of the response
json_match = re.search(r'({[\s\S]*})', response)
if json_match:
json_str = json_match.group(1)
try:
return json.loads(json_str)
except:
# If JSON parsing fails, return a structured response anyway
return self._extract_drug_info_from_text(response, drug_name)
else:
# If no JSON found, extract structured information
return self._extract_drug_info_from_text(response, drug_name)
except Exception as e:
print(f"Error in LLM inference: {e}")
return self._fallback_drug_information(drug_name)
def _extract_drug_info_from_text(self, text, drug_name):
"""Extract drug information from text if JSON parsing fails"""
# Create default structure
drug_info = {
"drug_name": drug_name,
"drug_class": "Not specified",
"mechanism": "Not specified",
"indications": [],
"side_effects": [],
"common_interactions": [],
"contraindications": []
}
# Try to extract each section
class_match = re.search(r'[Cc]lass:?\s+([^\n\.]+)', text)
if class_match:
drug_info["drug_class"] = class_match.group(1).strip()
mechanism_match = re.search(r'[Mm]echanism:?\s+([^\n\.]+)', text)
if mechanism_match:
drug_info["mechanism"] = mechanism_match.group(1).strip()
# Extract lists with regex
indication_match = re.search(r'[Ii]ndications?:?\s+((?:[^\n]+\n?)+)', text)
if indication_match:
indications_text = indication_match.group(1)
# Split by common list markers
indications = re.findall(r'(?:^|\n)\s*(?:\d+\.|\*|-|•)\s*([^\n]+)', indications_text)
if indications:
drug_info["indications"] = [ind.strip() for ind in indications]
elif indications_text:
# If no list markers, just split by commas or newlines
items = re.split(r',|\n', indications_text)
drug_info["indications"] = [item.strip() for item in items if item.strip()]
# Similarly for other list-based fields
side_effects_match = re.search(r'[Ss]ide [Ee]ffects:?\s+((?:[^\n]+\n?)+)', text)
if side_effects_match:
side_effects_text = side_effects_match.group(1)
side_effects = re.findall(r'(?:^|\n)\s*(?:\d+\.|\*|-|•)\s*([^\n]+)', side_effects_text)
if side_effects:
drug_info["side_effects"] = [se.strip() for se in side_effects]
elif side_effects_text:
items = re.split(r',|\n', side_effects_text)
drug_info["side_effects"] = [item.strip() for item in items if item.strip()]
interactions_match = re.search(r'[Ii]nteractions:?\s+((?:[^\n]+\n?)+)', text)
if interactions_match:
interactions_text = interactions_match.group(1)
interactions = re.findall(r'(?:^|\n)\s*(?:\d+\.|\*|-|•)\s*([^\n]+)', interactions_text)
if interactions:
drug_info["common_interactions"] = [inter.strip() for inter in interactions]
elif interactions_text:
items = re.split(r',|\n', interactions_text)
drug_info["common_interactions"] = [item.strip() for item in items if item.strip()]
contraindications_match = re.search(r'[Cc]ontraindications:?\s+((?:[^\n]+\n?)+)', text)
if contraindications_match:
contraindications_text = contraindications_match.group(1)
contraindications = re.findall(r'(?:^|\n)\s*(?:\d+\.|\*|-|•)\s*([^\n]+)', contraindications_text)
if contraindications:
drug_info["contraindications"] = [contra.strip() for contra in contraindications]
elif contraindications_text:
items = re.split(r',|\n', contraindications_text)
drug_info["contraindications"] = [item.strip() for item in items if item.strip()]
return drug_info
def _fallback_drug_information(self, drug_name):
"""Fallback method for drug information when model is not available"""
# Return a structured response with disclaimer
return {
"drug_name": drug_name,
"drug_class": "Information not available",
"mechanism": "Information not available",
"indications": ["Information not available"],
"side_effects": ["Information not available"],
"common_interactions": ["Information not available"],
"contraindications": ["Information not available"],
"note": "Biomedical model not available - using fallback information"
} |