Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import torch.nn.functional as F | |
import torch | |
import numpy as np | |
import matplotlib | |
from matplotlib import pyplot as plt | |
import matplotlib.cm | |
from PIL import Image | |
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
PACKAGE_PARENT = '..' | |
WISE_DIR = '../wise/' | |
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) | |
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) | |
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR))) | |
from effects.gauss2d_xy_separated import Gauss2DEffect | |
from effects.minimal_pipeline import MinimalPipelineEffect | |
from helpers import torch_to_np, np_to_torch | |
from effects import get_default_settings | |
from demo_config import HUGGING_FACE | |
st.set_page_config(page_title="Editing Demo", layout="wide") | |
# @st.cache(hash_funcs={OilPaintEffect: id}) | |
def local_edits_create_effect(): | |
effect, preset, param_set = get_default_settings("minimal_pipeline") | |
effect.enable_checkpoints() | |
effect.cuda() | |
return effect, param_set | |
effect, param_set = local_edits_create_effect() | |
def gen_param_strength_fig(): | |
cmap = matplotlib.cm.get_cmap('plasma') | |
# cmap show | |
gradient = np.linspace(0, 1, 256) | |
gradient = np.vstack((gradient, gradient)) | |
fig, ax = plt.subplots(figsize=(3, 0.1)) | |
fig.patch.set_alpha(0.0) | |
ax.set_title("parameter strength", fontsize=6.5, loc="left") | |
ax.imshow(gradient, aspect='auto', cmap=cmap) | |
ax.set_axis_off() | |
return fig, cmap | |
cmap_fig, cmap = gen_param_strength_fig() | |
st.session_state["canvas_key"] = "canvas" | |
try: | |
vp = st.session_state["result_vp"] | |
org_cuda = st.session_state["effect_input"] | |
except KeyError as e: | |
print("init run, certain keys not found. If this happens once its ok.") | |
if st.session_state["action"] != "switch_page_from_local_edits": | |
st.session_state.local_edit_action = "init" | |
st.session_state["action"] = "switch_page_from_local_edits" # on switchback, remember effect input | |
if "mask_edit_counter" not in st.session_state: | |
st.session_state["mask_edit_counter"] = 1 | |
if "initial_drawing" not in st.session_state: | |
st.session_state["initial_drawing"] = {"random": st.session_state["mask_edit_counter"], "background": "#eee"} | |
def on_slider_change(): | |
if st.session_state.local_edit_action == "init": | |
st.stop() | |
st.session_state.local_edit_action = "slider" | |
def on_param_change(): | |
st.session_state.local_edit_action = "param_change" | |
active_param = st.sidebar.selectbox("active parameter: ", param_set + ["smooth"], index=2, on_change=on_param_change) | |
st.sidebar.text("Drawing options") | |
if active_param != "smooth": | |
plus_or_minus = st.sidebar.slider("Increase or decrease param map: ", -1.0, 1.0, 0.8, 0.05, | |
on_change=on_slider_change) | |
else: | |
sigma = st.sidebar.slider("Sigma: ", 0.1, 10.0, 0.5, 0.1, on_change=on_slider_change) | |
stroke_width = st.sidebar.slider("Stroke width: ", 1, 50, 20, on_change=on_slider_change) | |
drawing_mode = st.sidebar.selectbox( | |
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"), on_change=on_slider_change, | |
) | |
st.sidebar.text("Viewing options") | |
if active_param != "smooth": | |
overlay = st.sidebar.slider("show parameter overlay: ", 0.0, 1.0, 0.8, 0.02, on_change=on_slider_change) | |
st.sidebar.pyplot(cmap_fig, bbox_inches='tight', pad_inches=0) | |
st.sidebar.text("Update:") | |
realtime_update = st.sidebar.checkbox("Update in realtime", True) | |
clear_after_draw = st.sidebar.checkbox("Clear Canvas after each Stroke", False) | |
invert_selection = st.sidebar.checkbox("Invert Selection", False) | |
def greyscale_org(_org_cuda, content_id): #content_id is used for hashing | |
if HUGGING_FACE: | |
wsize = 450 | |
img_org_height, img_org_width = _org_cuda.shape[-2:] | |
wpercent = (wsize / float(img_org_width)) | |
hsize = int((float(img_org_height) * float(wpercent))) | |
else: | |
longest_edge = 670 | |
img_org_height, img_org_width = _org_cuda.shape[-2:] | |
max_width_height = max(img_org_width, img_org_height) | |
hsize = int((float(longest_edge) * float(float(img_org_height) / max_width_height))) | |
wsize = int((float(longest_edge) * float(float(img_org_width) / max_width_height))) | |
org_img = F.interpolate(_org_cuda, (hsize, wsize), mode="bilinear") | |
org_img = torch.mean(org_img, dim=1, keepdim=True) / 2.0 | |
org_img = torch_to_np(org_img)[..., np.newaxis].repeat(3, axis=2) | |
return org_img, hsize, wsize | |
def generate_param_mask(vp): | |
greyscale_img, hsize, wsize = greyscale_org(org_cuda, st.session_state["Content_id"]) | |
if active_param != "smooth": | |
scaled_vp = F.interpolate(vp, (hsize, wsize))[:, effect.vpd.name2idx[active_param]] | |
param_cmapped = cmap((scaled_vp + 0.5).cpu().numpy())[...,:3][0] | |
greyscale_img = greyscale_img * (1 - overlay) + param_cmapped * overlay | |
return Image.fromarray((greyscale_img * 255).astype(np.uint8)) | |
def compute_results(_vp): | |
if "cached_canvas" in st.session_state and st.session_state["cached_canvas"].image_data is not None: | |
canvas_result = st.session_state["cached_canvas"] | |
abc = np_to_torch(canvas_result.image_data.astype(np.float32)).sum(dim=1, keepdim=True).cuda() | |
if invert_selection: | |
abc = abc * (- 1.0) + 1.0 | |
img_org_width = org_cuda.shape[-1] | |
img_org_height = org_cuda.shape[-2] | |
res_data = F.interpolate(abc, (img_org_height, img_org_width)).squeeze(1) | |
if active_param != "smooth": | |
_vp[:, effect.vpd.name2idx[active_param]] += plus_or_minus * res_data | |
_vp.clamp_(-0.5, 0.5) | |
else: | |
gauss2dx = Gauss2DEffect(dxdy=[1.0, 0.0], dim_kernsize=5) | |
gauss2dy = Gauss2DEffect(dxdy=[0.0, 1.0], dim_kernsize=5) | |
vp_smoothed = gauss2dx(_vp, torch.tensor(sigma).cuda()) | |
vp_smoothed = gauss2dy(vp_smoothed, torch.tensor(sigma).cuda()) | |
print(res_data.shape) | |
print(_vp.shape) | |
print(vp_smoothed.shape) | |
_vp = torch.lerp(_vp, vp_smoothed, res_data.unsqueeze(1)) | |
with torch.no_grad(): | |
result_cuda = effect(org_cuda, _vp) | |
_, hsize, wsize = greyscale_org(org_cuda, st.session_state["Content_id"]) | |
result_cuda = F.interpolate(result_cuda, (hsize, wsize), mode="bilinear") | |
return Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8)), _vp | |
coll1, coll2 = st.columns(2) | |
coll1.header("Draw Mask:") | |
coll2.header("Live Result") | |
# there is no way of removing the canvas history/state without rerunning the whole program. | |
# therefore, giving the canvas a initial_drawing that differs from the canvas state will clear the background | |
def mark_canvas_for_redraw(): | |
print("mark for redraw") | |
st.session_state["mask_edit_counter"] += 1 # change state of initial drawing | |
initial_drawing = {"random": st.session_state["mask_edit_counter"], "background": "#eee"} | |
st.session_state["initial_drawing"] = initial_drawing | |
with coll1: | |
print("edit action", st.session_state.local_edit_action) | |
if clear_after_draw and st.session_state.local_edit_action not in ("slider", "param_change", "init"): | |
if st.session_state.local_edit_action == "redraw": | |
st.session_state.local_edit_action = "draw" | |
mark_canvas_for_redraw() | |
else: | |
st.session_state.local_edit_action = "redraw" | |
mask = generate_param_mask(st.session_state["result_vp"]) | |
st.session_state["last_mask"] = mask | |
# Create a canvas component | |
canvas_result = st_canvas( | |
fill_color="rgba(0, 0, 0, 1)", | |
stroke_width=stroke_width, | |
background_image=mask, | |
update_streamlit=realtime_update, | |
width=mask.width, | |
height=mask.height, | |
initial_drawing=st.session_state["initial_drawing"], | |
drawing_mode=drawing_mode, | |
key=st.session_state.canvas_key, | |
) | |
if canvas_result.json_data is None: | |
print("stops") | |
st.stop() | |
st.session_state["cached_canvas"] = canvas_result | |
print("compute result") | |
img_res, vp = compute_results(vp) | |
st.session_state["last_result"] = img_res | |
st.session_state["result_vp"] = vp | |
st.markdown("### Mask: " + active_param) | |
if st.session_state.local_edit_action in ("slider", "param_change", "init"): | |
print("set redraw") | |
st.session_state.local_edit_action = "redraw" | |
print("plot masks") | |
texts = [] | |
preview_masks = [] | |
img = st.session_state["last_mask"] | |
for i, p in enumerate(param_set): | |
idx = effect.vpd.name2idx[p] | |
iii = F.interpolate(vp[:, idx:idx + 1] + 0.5, (int(img.height * 0.2), int(img.width * 0.2))) | |
texts.append(p[:15]) | |
preview_masks.append(torch_to_np(iii)) | |
coll2.image(img_res) # , use_column_width="auto") | |
ppp = st.columns(len(param_set)) | |
for i, (txt, im) in enumerate(zip(texts, preview_masks)): | |
ppp[i].text(txt) | |
ppp[i].image(im, clamp=True) | |
print("....") | |