Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import torch.nn.functional as F | |
import torch | |
PACKAGE_PARENT = '..' | |
WISE_DIR = '../wise/' | |
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) | |
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) | |
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR))) | |
import numpy as np | |
from PIL import Image | |
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
from effects.minimal_pipeline import MinimalPipelineEffect | |
from helpers.visual_parameter_def import minimal_pipeline_presets, minimal_pipeline_bump_mapping_preset, minimal_pipeline_xdog_preset | |
from helpers import torch_to_np, np_to_torch | |
from effects import get_default_settings | |
from demo_config import HUGGING_FACE | |
st.set_page_config(page_title="Preset Edit Demo", layout="wide") | |
# @st.cache(hash_funcs={OilPaintEffect: id}) | |
def local_edits_create_effect(): | |
effect, preset, param_set = get_default_settings("minimal_pipeline") | |
effect.enable_checkpoints() | |
effect.cuda() | |
return effect, param_set | |
effect, param_set = local_edits_create_effect() | |
presets = { | |
"original": minimal_pipeline_presets, | |
"bump mapped": minimal_pipeline_bump_mapping_preset, | |
"contoured": minimal_pipeline_xdog_preset | |
} | |
st.session_state["action"] = "switch_page_from_presets" # on switchback, remember effect input | |
active_preset = st.sidebar.selectbox("apply preset: ", ["original", "bump mapped", "contoured"]) | |
blend_strength = st.sidebar.slider("Parameter blending strength (non-hue) : ", 0.0, 1.0, 1.0, 0.05) | |
hue_blend_strength = st.sidebar.slider("Hue-shift blending strength : ", 0.0, 1.0, 1.0, 0.05) | |
st.sidebar.text("Drawing options:") | |
stroke_width = st.sidebar.slider("Stroke width: ", 1, 80, 40) | |
drawing_mode = st.sidebar.selectbox( | |
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform") | |
) | |
st.session_state["preset_canvas_key"] ="preset_canvas" | |
vp = torch.clone(st.session_state["result_vp"]) | |
org_cuda = st.session_state["effect_input"] | |
def greyscale_original(_org_cuda, content_id): #content_id is used for hashing | |
if HUGGING_FACE: | |
wsize = 450 | |
img_org_height, img_org_width = _org_cuda.shape[-2:] | |
wpercent = (wsize / float(img_org_width)) | |
hsize = int((float(img_org_height) * float(wpercent))) | |
else: | |
longest_edge = 670 | |
img_org_height, img_org_width = _org_cuda.shape[-2:] | |
max_width_height = max(img_org_width, img_org_height) | |
hsize = int((float(longest_edge) * float(float(img_org_height) / max_width_height))) | |
wsize = int((float(longest_edge) * float(float(img_org_width) / max_width_height))) | |
org_img = F.interpolate(_org_cuda, (hsize, wsize), mode="bilinear") | |
org_img = torch.mean(org_img, dim=1, keepdim=True) / 2.0 | |
org_img = torch_to_np(org_img, multiply_by_255=True)[..., np.newaxis].repeat(3, axis=2) | |
org_img = Image.fromarray(org_img.astype(np.uint8)) | |
return org_img, hsize, wsize | |
greyscale_img, hsize, wsize = greyscale_original(org_cuda, st.session_state["Content_id"]) | |
coll1, coll2 = st.columns(2) | |
coll1.header("Draw Mask") | |
coll2.header("Live Result") | |
with coll1: | |
# Create a canvas component | |
canvas_result = st_canvas( | |
fill_color="rgba(0, 0, 0, 1)", # Fixed fill color with some opacity | |
stroke_width=stroke_width, | |
background_image=greyscale_img, | |
width=greyscale_img.width, | |
height=greyscale_img.height, | |
drawing_mode=drawing_mode, | |
key=st.session_state["preset_canvas_key"] | |
) | |
res_data = None | |
if canvas_result.image_data is not None: | |
abc = np_to_torch(canvas_result.image_data.astype(np.float)).sum(dim=1, keepdim=True).cuda() | |
img_org_width = org_cuda.shape[-1] | |
img_org_height = org_cuda.shape[-2] | |
res_data = F.interpolate(abc, (img_org_height, img_org_width)).squeeze(1) | |
preset_tensor = effect.vpd.preset_tensor(presets[active_preset], org_cuda, add_local_dims=True) | |
hue = torch.clone(vp[:,effect.vpd.name2idx["hueShift"]]) | |
vp[:] = preset_tensor * res_data * blend_strength + vp[:] * (1 - res_data * blend_strength) | |
vp[:, effect.vpd.name2idx["hueShift"]] = \ | |
preset_tensor[:,effect.vpd.name2idx["hueShift"]] * res_data * hue_blend_strength + hue * (1 - res_data * hue_blend_strength) | |
with torch.no_grad(): | |
result_cuda = effect(org_cuda, vp) | |
img_res = Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8)) | |
coll2.image(img_res) | |
apply_btn = st.sidebar.button("Apply") | |
if apply_btn: | |
st.session_state["result_vp"] = vp |