import streamlit as st import tensorflow as tf import numpy as np from PIL import Image import os # === Fix font/matplotlib warnings for Hugging Face === os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib" os.environ["XDG_CACHE_HOME"] = "/tmp" # === Custom loss and metrics === def weighted_dice_loss(y_true, y_pred): smooth = 1e-6 y_true_f = tf.reshape(y_true, [-1]) y_pred_f = tf.reshape(y_pred, [-1]) intersection = tf.reduce_sum(y_true_f * y_pred_f) return 1 - ((2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)) def iou_metric(y_true, y_pred): y_true = tf.cast(y_true > 0.5, tf.float32) y_pred = tf.cast(y_pred > 0.5, tf.float32) intersection = tf.reduce_sum(y_true * y_pred) union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection return intersection / (union + 1e-6) def bce_loss(y_true, y_pred): return tf.keras.losses.binary_crossentropy(y_true, y_pred) # === Load model === model_path = "final_model_after_third_iteration_WDL0.07_0.5155/" @st.cache_resource def load_model(): return tf.keras.models.load_model( model_path, custom_objects={ "weighted_dice_loss": weighted_dice_loss, "iou_metric": iou_metric, "bce_loss": bce_loss } ) model = load_model() # === Title === st.title("🕳️ SinkSAM-Net - Self Supervised Sinkhole segmentation") # === Session state for selected example === if "selected_example" not in st.session_state: st.session_state.selected_example = None # === File uploader === uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg", "tif", "tiff"]) # === Example selector === example_dir = "examples" example_files = sorted([ f for f in os.listdir(example_dir) if f.lower().endswith((".jpg", ".jpeg", ".png", ".tif", ".tiff")) ]) if example_files: st.subheader("🖼️ Try with an Example Image") cols = st.columns(min(len(example_files), 4)) for i, file in enumerate(example_files): with cols[i % len(cols)]: img_path = os.path.join(example_dir, file) example_img = Image.open(img_path) st.image(example_img, caption=file, use_container_width=True) if st.button(f"Run Segmentation", key=file): st.session_state.selected_example = img_path # === Determine active image === active_image = None if uploaded_image is not None: active_image = uploaded_image elif st.session_state.selected_example is not None: active_image = st.session_state.selected_example # === Confidence threshold slider === threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, step=0.01) # === Prediction === if active_image: image = Image.open(active_image).convert("RGB") st.image(image, caption="Input Image", use_container_width=True) resized = image.resize((512, 512)) x = np.expand_dims(np.array(resized), axis=0) y = model.predict(x)[0, :, :, 0] st.text(f"Prediction min/max: {y.min():.5f} / {y.max():.5f}") # Apply threshold mask_bin = (y > threshold).astype(np.uint8) * 255 mask_image = Image.fromarray(mask_bin) st.image(mask_image, caption=f"Segmentation (Threshold = {threshold:.2f})", use_container_width=True)