SinkSAM-Net / app.py
osherr's picture
Update app.py
862a0c0 verified
raw
history blame
3.33 kB
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import os
# === Fix font/matplotlib warnings for Hugging Face ===
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["XDG_CACHE_HOME"] = "/tmp"
# === Custom loss and metrics ===
def weighted_dice_loss(y_true, y_pred):
smooth = 1e-6
y_true_f = tf.reshape(y_true, [-1])
y_pred_f = tf.reshape(y_pred, [-1])
intersection = tf.reduce_sum(y_true_f * y_pred_f)
return 1 - ((2. * intersection + smooth) /
(tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth))
def iou_metric(y_true, y_pred):
y_true = tf.cast(y_true > 0.5, tf.float32)
y_pred = tf.cast(y_pred > 0.5, tf.float32)
intersection = tf.reduce_sum(y_true * y_pred)
union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection
return intersection / (union + 1e-6)
def bce_loss(y_true, y_pred):
return tf.keras.losses.binary_crossentropy(y_true, y_pred)
# === Load model ===
model_path = "final_model_after_third_iteration_WDL0.07_0.5155/"
@st.cache_resource
def load_model():
return tf.keras.models.load_model(
model_path,
custom_objects={
"weighted_dice_loss": weighted_dice_loss,
"iou_metric": iou_metric,
"bce_loss": bce_loss
}
)
model = load_model()
# === Title ===
st.title("๐Ÿ•ณ๏ธ Sinkhole Segmentation with EffV2-UNet")
# === Confidence threshold and predict trigger ===
st.sidebar.header("Segmentation Settings")
threshold = st.sidebar.slider("Confidence Threshold", 0.0, 1.0, 0.5, step=0.01)
# === Image input section ===
uploaded_image = st.file_uploader("๐Ÿ“ค Upload an image", type=["png", "jpg", "jpeg", "tif", "tiff"])
# === Example selector with preview ===
example_dir = "examples"
example_files = sorted([
f for f in os.listdir(example_dir)
if f.lower().endswith((".jpg", ".jpeg", ".png", ".tif", ".tiff"))
])
selected_example_path = None
if example_files:
st.subheader("๐Ÿ–ผ๏ธ Try with an Example Image")
cols = st.columns(min(len(example_files), 4))
for i, file in enumerate(example_files):
img_path = os.path.join(example_dir, file)
img_preview = Image.open(img_path).convert("RGB").resize((128, 128))
with cols[i % len(cols)]:
st.image(img_preview, caption=file, use_column_width=True)
if st.button(f"Use {file}", key=file):
selected_example_path = img_path
# === Set image to process ===
if selected_example_path:
uploaded_image = selected_example_path
# === Run prediction if button clicked ===
if uploaded_image:
if isinstance(uploaded_image, str):
image = Image.open(uploaded_image).convert("RGB")
else:
image = Image.open(uploaded_image).convert("RGB")
st.image(image, caption="Input Image", use_column_width=True)
if st.button("Run Segmentation"):
resized = image.resize((512, 512))
x = np.expand_dims(np.array(resized), axis=0)
y = model.predict(x)[0, :, :, 0]
st.text(f"Prediction min/max: {y.min():.5f} / {y.max():.5f}")
mask_bin = (y > threshold).astype(np.uint8) * 255
mask_image = Image.fromarray(mask_bin)
st.image(mask_image, caption=f"Segmentation Mask (Threshold = {threshold:.2f})", use_column_width=True)