Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import os | |
# === Fix font/matplotlib warnings for Hugging Face === | |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib" | |
os.environ["XDG_CACHE_HOME"] = "/tmp" | |
# === Custom loss and metrics === | |
def weighted_dice_loss(y_true, y_pred): | |
smooth = 1e-6 | |
y_true_f = tf.reshape(y_true, [-1]) | |
y_pred_f = tf.reshape(y_pred, [-1]) | |
intersection = tf.reduce_sum(y_true_f * y_pred_f) | |
return 1 - ((2. * intersection + smooth) / | |
(tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)) | |
def iou_metric(y_true, y_pred): | |
y_true = tf.cast(y_true > 0.5, tf.float32) | |
y_pred = tf.cast(y_pred > 0.5, tf.float32) | |
intersection = tf.reduce_sum(y_true * y_pred) | |
union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection | |
return intersection / (union + 1e-6) | |
def bce_loss(y_true, y_pred): | |
return tf.keras.losses.binary_crossentropy(y_true, y_pred) | |
# === Load model === | |
model_path = "final_model_after_third_iteration_WDL0.07_0.5155/" | |
def load_model(): | |
return tf.keras.models.load_model( | |
model_path, | |
custom_objects={ | |
"weighted_dice_loss": weighted_dice_loss, | |
"iou_metric": iou_metric, | |
"bce_loss": bce_loss | |
} | |
) | |
model = load_model() | |
# === Streamlit UI === | |
st.title("🕳️ Sinkhole Segmentation with EffV2-UNet") | |
uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
if uploaded_image: | |
image = Image.open(uploaded_image).convert("RGB") | |
st.image(image, caption="Original Image", use_column_width=True) | |
# Preprocess and predict | |
resized = image.resize((512, 512)) | |
x = np.expand_dims(np.array(resized) / 255.0, axis=0) | |
y = model.predict(x)[0, :, :, 0] | |
y_norm = (y - y.min()) / (y.max() - y.min() + 1e-6) | |
mask = (y_norm * 255).astype(np.uint8) | |
result = Image.fromarray(mask) | |
st.image(result, caption="Predicted Segmentation", use_column_width=True) | |