Spaces:
Running
Running
File size: 879 Bytes
63ffd9e be5a460 63ffd9e be5a460 e834f00 319e1e0 992da8d 63ffd9e 8e15b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
---
title: SinkSAM Net
emoji: π
colorFrom: gray
colorTo: yellow
sdk: streamlit
sdk_version: 1.44.1
app_file: app.py
pinned: false
license: mit
short_description: Knowledge-Driven Self-Supervised Sinkhole Segmentation
tags:
- object-detection
- segmentation
- remote-sensing
- geoscience
---
This is a demo is a simplified version of the approach described in the paper, ["SinkSAM: A Monocular Depth-Guided SAM Framework for Automatic Sinkhole Segmentation
"](https://arxiv.org/abs/2410.01473)
```
@misc{rafaeli2024sinksammonoculardepthguidedsam,
title={SinkSAM: A Monocular Depth-Guided SAM Framework for Automatic Sinkhole Segmentation},
author={Osher Rafaeli and Tal Svoray and Ariel Nahlieli},
year={2024},
eprint={2410.01473},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.01473},
}
```
|