File size: 2,157 Bytes
50ac931 e719f54 d4a97a6 94a08bb e719f54 d4a97a6 e719f54 d4a97a6 e719f54 d4a97a6 0f9d18a d4a97a6 d7abcd1 5c8f89e d7abcd1 5c8f89e d7abcd1 5c8f89e d7abcd1 5c8f89e d7abcd1 50ac931 e719f54 d4a97a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import spaces
# 加载模型和分词器
model_name = "Zhihu-ai/Zhi-writing-dsr1-14b"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
@spaces.GPU()
def predict(message, history):
# 构建输入
history_text = ""
for human, assistant in history:
history_text += f"Human: {human}\nAssistant: {assistant}\n"
prompt = f"{history_text}Human: {message}\nAssistant:"
# 生成回复
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=10000,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response.strip()
# 创建Gradio界面
demo = gr.ChatInterface(
predict,
title="测试Zhi-writing-dsr1-14b",
description="Zhihu-ai/Zhi-writing-dsr1-14b",
examples=["鲁迅口吻写五百字,描述桔猫的可爱!", "桔了个仔是谁", "介绍自己"],
theme=gr.themes.Soft()
)
# with gr.Blocks(theme=gr.themes.Soft()) as demo:
# gr.Markdown("# Zhi-writing-dsr1-14")
# gr.Markdown("这是一个基于Zhi-writing-dsr1-14的文章生成器")
# chatbot = gr.Chatbot()
# msg = gr.Textbox(label="输入消息")
# clear = gr.Button("清除对话")
# def respond(message, chat_history):
# bot_message = ""
# for response in predict(message, chat_history):
# bot_message = response
# chat_history.append((message, bot_message))
# yield chat_history
# return "", chat_history
# msg.submit(respond, [msg, chatbot], [msg, chatbot])
# clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(share=True)
|