|
|
|
|
|
import itertools |
|
|
|
from ultralytics.data import build_yolo_dataset |
|
from ultralytics.models import yolo |
|
from ultralytics.nn.tasks import WorldModel |
|
from ultralytics.utils import DEFAULT_CFG, RANK, checks |
|
from ultralytics.utils.torch_utils import de_parallel |
|
|
|
|
|
def on_pretrain_routine_end(trainer): |
|
"""Callback.""" |
|
if RANK in {-1, 0}: |
|
|
|
names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())] |
|
de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False) |
|
device = next(trainer.model.parameters()).device |
|
trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device) |
|
for p in trainer.text_model.parameters(): |
|
p.requires_grad_(False) |
|
|
|
|
|
class WorldTrainer(yolo.detect.DetectionTrainer): |
|
""" |
|
A class to fine-tune a world model on a close-set dataset. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.world import WorldModel |
|
|
|
args = dict(model="yolov8s-world.pt", data="coco8.yaml", epochs=3) |
|
trainer = WorldTrainer(overrides=args) |
|
trainer.train() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initialize a WorldTrainer object with given arguments.""" |
|
if overrides is None: |
|
overrides = {} |
|
super().__init__(cfg, overrides, _callbacks) |
|
|
|
|
|
try: |
|
import clip |
|
except ImportError: |
|
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git") |
|
import clip |
|
self.clip = clip |
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True): |
|
"""Return WorldModel initialized with specified config and weights.""" |
|
|
|
|
|
model = WorldModel( |
|
cfg["yaml_file"] if isinstance(cfg, dict) else cfg, |
|
ch=3, |
|
nc=min(self.data["nc"], 80), |
|
verbose=verbose and RANK == -1, |
|
) |
|
if weights: |
|
model.load(weights) |
|
self.add_callback("on_pretrain_routine_end", on_pretrain_routine_end) |
|
|
|
return model |
|
|
|
def build_dataset(self, img_path, mode="train", batch=None): |
|
""" |
|
Build YOLO Dataset. |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. |
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. |
|
""" |
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) |
|
return build_yolo_dataset( |
|
self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs, multi_modal=mode == "train" |
|
) |
|
|
|
def preprocess_batch(self, batch): |
|
"""Preprocesses a batch of images for YOLOWorld training, adjusting formatting and dimensions as needed.""" |
|
batch = super().preprocess_batch(batch) |
|
|
|
|
|
texts = list(itertools.chain(*batch["texts"])) |
|
text_token = self.clip.tokenize(texts).to(batch["img"].device) |
|
txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype) |
|
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True) |
|
batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1]) |
|
return batch |
|
|