Live-Podcast / app-backup.py
openfree's picture
Update app-backup.py
1e01dd8 verified
raw
history blame
60.4 kB
import spaces # ์ถ”๊ฐ€
import gradio as gr
import os
import asyncio
import torch
import io
import json
import re
import httpx
import tempfile
import wave
import base64
import numpy as np
import soundfile as sf
import subprocess
import shutil
import requests
import logging
from datetime import datetime, timedelta
from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional
from pathlib import Path
from threading import Thread
from dotenv import load_dotenv
# PDF processing imports
from langchain_community.document_loaders import PyPDFLoader
# Edge TTS imports
import edge_tts
from pydub import AudioSegment
# OpenAI imports
from openai import OpenAI
# Transformers imports (for legacy local mode)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
# Llama CPP imports (for new local mode)
try:
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from huggingface_hub import hf_hub_download
LLAMA_CPP_AVAILABLE = True
except ImportError:
LLAMA_CPP_AVAILABLE = False
# Spark TTS imports
try:
from huggingface_hub import snapshot_download
SPARK_AVAILABLE = True
except:
SPARK_AVAILABLE = False
# MeloTTS imports (for local mode)
try:
# unidic ๋‹ค์šด๋กœ๋“œ๋ฅผ ์กฐ๊ฑด๋ถ€๋กœ ์ฒ˜๋ฆฌ
if not os.path.exists("/usr/local/lib/python3.10/site-packages/unidic"):
try:
os.system("python -m unidic download")
except:
pass
from melo.api import TTS as MeloTTS
MELO_AVAILABLE = True
except:
MELO_AVAILABLE = False
load_dotenv()
# Brave Search API ์„ค์ •
BRAVE_KEY = os.getenv("BSEARCH_API")
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
@dataclass
class ConversationConfig:
max_words: int = 6000 # 4000์—์„œ 6000์œผ๋กœ ์ฆ๊ฐ€ (1.5๋ฐฐ)
prefix_url: str = "https://r.jina.ai/"
api_model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
legacy_local_model_name: str = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# ์ƒˆ๋กœ์šด ๋กœ์ปฌ ๋ชจ๋ธ ์„ค์ •
local_model_name: str = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf"
local_model_repo: str = "ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503"
# ํ† ํฐ ์ˆ˜ ์ฆ๊ฐ€
max_tokens: int = 4500 # 3000์—์„œ 4500์œผ๋กœ ์ฆ๊ฐ€ (1.5๋ฐฐ)
max_new_tokens: int = 9000 # 6000์—์„œ 9000์œผ๋กœ ์ฆ๊ฐ€ (1.5๋ฐฐ)
min_conversation_turns: int = 12 # ์ตœ์†Œ ๋Œ€ํ™” ํ„ด ์ˆ˜
max_conversation_turns: int = 15 # ์ตœ๋Œ€ ๋Œ€ํ™” ํ„ด ์ˆ˜
def brave_search(query: str, count: int = 8, freshness_days: int | None = None):
"""Brave Search API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์‹  ์ •๋ณด ๊ฒ€์ƒ‰"""
if not BRAVE_KEY:
return []
params = {"q": query, "count": str(count)}
if freshness_days:
dt_from = (datetime.utcnow() - timedelta(days=freshness_days)).strftime("%Y-%m-%d")
params["freshness"] = dt_from
try:
r = requests.get(
BRAVE_ENDPOINT,
headers={"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY},
params=params,
timeout=15
)
raw = r.json().get("web", {}).get("results") or []
return [{
"title": r.get("title", ""),
"url": r.get("url", r.get("link", "")),
"snippet": r.get("description", r.get("text", "")),
"host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0]
} for r in raw[:count]]
except Exception as e:
logging.error(f"Brave search error: {e}")
return []
def format_search_results(query: str, for_keyword: bool = False) -> str:
"""๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ํฌ๋งทํŒ…ํ•˜์—ฌ ๋ฐ˜ํ™˜"""
# ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ ๋” ๋งŽ์€ ๊ฒฐ๊ณผ ์‚ฌ์šฉ
count = 5 if for_keyword else 3
rows = brave_search(query, count, freshness_days=7 if not for_keyword else None)
if not rows:
return ""
results = []
# ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ ๋” ์ƒ์„ธํ•œ ์ •๋ณด ํฌํ•จ
max_results = 4 if for_keyword else 2
for r in rows[:max_results]:
if for_keyword:
# ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์€ ๋” ๊ธด ์Šค๋‹ˆํŽซ ์‚ฌ์šฉ
snippet = r['snippet'][:200] + "..." if len(r['snippet']) > 200 else r['snippet']
results.append(f"**{r['title']}**\n{snippet}\nSource: {r['host']}")
else:
# ์ผ๋ฐ˜ ๊ฒ€์ƒ‰์€ ์งง์€ ์Šค๋‹ˆํŽซ
snippet = r['snippet'][:100] + "..." if len(r['snippet']) > 100 else r['snippet']
results.append(f"- {r['title']}: {snippet}")
return "\n\n".join(results) + "\n"
def extract_keywords_for_search(text: str, language: str = "English") -> List[str]:
"""ํ…์ŠคํŠธ์—์„œ ๊ฒ€์ƒ‰ํ•  ํ‚ค์›Œ๋“œ ์ถ”์ถœ (๊ฐœ์„ )"""
# ํ…์ŠคํŠธ ์•ž๋ถ€๋ถ„๋งŒ ์‚ฌ์šฉ (๋„ˆ๋ฌด ๋งŽ์€ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ๋ฐฉ์ง€)
text_sample = text[:500]
if language == "Korean":
import re
# ํ•œ๊ตญ์–ด ๋ช…์‚ฌ ์ถ”์ถœ (2๊ธ€์ž ์ด์ƒ)
keywords = re.findall(r'[๊ฐ€-ํžฃ]{2,}', text_sample)
# ์ค‘๋ณต ์ œ๊ฑฐํ•˜๊ณ  ๊ฐ€์žฅ ๊ธด ๋‹จ์–ด 1๊ฐœ๋งŒ ์„ ํƒ
unique_keywords = list(dict.fromkeys(keywords))
# ๊ธธ์ด ์ˆœ์œผ๋กœ ์ •๋ ฌํ•˜๊ณ  ๊ฐ€์žฅ ์˜๋ฏธ์žˆ์„ ๊ฒƒ ๊ฐ™์€ ๋‹จ์–ด ์„ ํƒ
unique_keywords.sort(key=len, reverse=True)
return unique_keywords[:1] # 1๊ฐœ๋งŒ ๋ฐ˜ํ™˜
else:
# ์˜์–ด๋Š” ๋Œ€๋ฌธ์ž๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋‹จ์–ด ์ค‘ ๊ฐ€์žฅ ๊ธด ๊ฒƒ 1๊ฐœ
words = text_sample.split()
keywords = [word.strip('.,!?;:') for word in words
if len(word) > 4 and word[0].isupper()]
if keywords:
return [max(keywords, key=len)] # ๊ฐ€์žฅ ๊ธด ๋‹จ์–ด 1๊ฐœ
return []
def search_and_compile_content(keyword: str, language: str = "English") -> str:
"""ํ‚ค์›Œ๋“œ๋กœ ๊ฒ€์ƒ‰ํ•˜์—ฌ ์ฝ˜ํ…์ธ  ์ปดํŒŒ์ผ"""
if not BRAVE_KEY:
return f"Search API not available. Using keyword: {keyword}"
# ์–ธ์–ด์— ๋”ฐ๋ฅธ ๊ฒ€์ƒ‰ ์ฟผ๋ฆฌ ์กฐ์ •
if language == "Korean":
queries = [
f"{keyword} ์ตœ์‹  ๋‰ด์Šค",
f"{keyword} ์ •๋ณด",
f"{keyword} ํŠธ๋ Œ๋“œ 2024"
]
else:
queries = [
f"{keyword} latest news",
f"{keyword} explained",
f"{keyword} trends 2024"
]
all_content = []
for query in queries:
results = brave_search(query, count=3)
for r in results[:2]: # ๊ฐ ์ฟผ๋ฆฌ๋‹น ์ƒ์œ„ 2๊ฐœ ๊ฒฐ๊ณผ
content = f"**{r['title']}**\n{r['snippet']}\n"
all_content.append(content)
if not all_content:
return f"No search results found for: {keyword}"
# ์ปดํŒŒ์ผ๋œ ์ฝ˜ํ…์ธ  ๋ฐ˜ํ™˜
compiled = "\n\n".join(all_content)
# ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜ ์†Œ๊ฐœ ์ถ”๊ฐ€
if language == "Korean":
intro = f"'{keyword}'์— ๋Œ€ํ•œ ์ตœ์‹  ์ •๋ณด์™€ ํŠธ๋ Œ๋“œ:\n\n"
else:
intro = f"Latest information and trends about '{keyword}':\n\n"
return intro + compiled
class UnifiedAudioConverter:
def __init__(self, config: ConversationConfig):
self.config = config
self.llm_client = None
self.legacy_local_model = None
self.legacy_tokenizer = None
# ์ƒˆ๋กœ์šด ๋กœ์ปฌ LLM ๊ด€๋ จ
self.local_llm = None
self.local_llm_model = None
self.melo_models = None
self.spark_model_dir = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def initialize_api_mode(self, api_key: str):
"""Initialize API mode with Together API (now fallback)"""
self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
@spaces.GPU(duration=120)
def initialize_local_mode(self):
"""Initialize new local mode with Llama CPP"""
if not LLAMA_CPP_AVAILABLE:
raise RuntimeError("Llama CPP dependencies not available. Please install llama-cpp-python and llama-cpp-agent.")
if self.local_llm is None or self.local_llm_model != self.config.local_model_name:
try:
# ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
model_path = hf_hub_download(
repo_id=self.config.local_model_repo,
filename=self.config.local_model_name,
local_dir="./models"
)
model_path_local = os.path.join("./models", self.config.local_model_name)
if not os.path.exists(model_path_local):
raise RuntimeError(f"Model file not found at {model_path_local}")
# Llama ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
self.local_llm = Llama(
model_path=model_path_local,
flash_attn=True,
n_gpu_layers=81 if torch.cuda.is_available() else 0,
n_batch=1024,
n_ctx=16384,
)
self.local_llm_model = self.config.local_model_name
print(f"Local LLM initialized: {model_path_local}")
except Exception as e:
print(f"Failed to initialize local LLM: {e}")
raise RuntimeError(f"Failed to initialize local LLM: {e}")
@spaces.GPU(duration=60)
def initialize_legacy_local_mode(self):
"""Initialize legacy local mode with Hugging Face model (fallback)"""
if self.legacy_local_model is None:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
self.legacy_local_model = AutoModelForCausalLM.from_pretrained(
self.config.legacy_local_model_name,
quantization_config=quantization_config
)
self.legacy_tokenizer = AutoTokenizer.from_pretrained(
self.config.legacy_local_model_name,
revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
)
def initialize_spark_tts(self):
"""Initialize Spark TTS model by downloading if needed"""
if not SPARK_AVAILABLE:
raise RuntimeError("Spark TTS dependencies not available")
model_dir = "pretrained_models/Spark-TTS-0.5B"
# Check if model exists, if not download it
if not os.path.exists(model_dir):
print("Downloading Spark-TTS model...")
try:
os.makedirs("pretrained_models", exist_ok=True)
snapshot_download(
"SparkAudio/Spark-TTS-0.5B",
local_dir=model_dir
)
print("Spark-TTS model downloaded successfully")
except Exception as e:
raise RuntimeError(f"Failed to download Spark-TTS model: {e}")
self.spark_model_dir = model_dir
# Check if we have the CLI inference script
if not os.path.exists("cli/inference.py"):
print("Warning: Spark-TTS CLI not found. Please clone the Spark-TTS repository.")
@spaces.GPU(duration=60)
def initialize_melo_tts(self):
"""Initialize MeloTTS models"""
if MELO_AVAILABLE and self.melo_models is None:
self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}
def fetch_text(self, url: str) -> str:
"""Fetch text content from URL"""
if not url:
raise ValueError("URL cannot be empty")
if not url.startswith("http://") and not url.startswith("https://"):
raise ValueError("URL must start with 'http://' or 'https://'")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_text_from_pdf(self, pdf_file) -> str:
"""Extract text content from PDF file"""
try:
# Gradio returns file path, not file object
if isinstance(pdf_file, str):
pdf_path = pdf_file
else:
# If it's a file object (shouldn't happen with Gradio)
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file.read())
pdf_path = tmp_file.name
# PDF ๋กœ๋“œ ๋ฐ ํ…์ŠคํŠธ ์ถ”์ถœ
loader = PyPDFLoader(pdf_path)
pages = loader.load()
# ๋ชจ๋“  ํŽ˜์ด์ง€์˜ ํ…์ŠคํŠธ๋ฅผ ๊ฒฐํ•ฉ
text = "\n".join([page.page_content for page in pages])
# ์ž„์‹œ ํŒŒ์ผ์ธ ๊ฒฝ์šฐ ์‚ญ์ œ
if not isinstance(pdf_file, str) and os.path.exists(pdf_path):
os.unlink(pdf_path)
return text
except Exception as e:
raise RuntimeError(f"Failed to extract text from PDF: {e}")
def _get_messages_formatter_type(self, model_name):
"""Get appropriate message formatter for the model"""
if "Mistral" in model_name or "BitSix" in model_name:
return MessagesFormatterType.CHATML
else:
return MessagesFormatterType.LLAMA_3
def _build_prompt(self, text: str, language: str = "English", search_context: str = "") -> str:
"""Build prompt for conversation generation with enhanced radio talk show style"""
# ํ…์ŠคํŠธ ๊ธธ์ด ์ œํ•œ
max_text_length = 4500 if search_context else 6000
if len(text) > max_text_length:
text = text[:max_text_length] + "..."
if language == "Korean":
# ๋Œ€ํ™” ํ…œํ”Œ๋ฆฟ์„ ๋” ๋งŽ์€ ํ„ด์œผ๋กœ ํ™•์žฅ
template = """
{
"conversation": [
{"speaker": "์ค€์ˆ˜", "text": ""},
{"speaker": "๋ฏผํ˜ธ", "text": ""},
{"speaker": "์ค€์ˆ˜", "text": ""},
{"speaker": "๋ฏผํ˜ธ", "text": ""},
{"speaker": "์ค€์ˆ˜", "text": ""},
{"speaker": "๋ฏผํ˜ธ", "text": ""},
{"speaker": "์ค€์ˆ˜", "text": ""},
{"speaker": "๋ฏผํ˜ธ", "text": ""},
{"speaker": "์ค€์ˆ˜", "text": ""},
{"speaker": "๋ฏผํ˜ธ", "text": ""},
{"speaker": "์ค€์ˆ˜", "text": ""},
{"speaker": "๋ฏผํ˜ธ", "text": ""}
]
}
"""
context_part = ""
if search_context:
context_part = f"# ์ตœ์‹  ๊ด€๋ จ ์ •๋ณด:\n{search_context}\n"
base_prompt = (
f"# ์›๋ณธ ์ฝ˜ํ…์ธ :\n{text}\n\n"
f"{context_part}"
f"์œ„ ๋‚ด์šฉ์œผ๋กœ ๋ผ๋””์˜ค ๋Œ€๋‹ด ํ”„๋กœ๊ทธ๋žจ ๋Œ€๋ณธ์„ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.\n\n"
f"## ํ•ต์‹ฌ ์ง€์นจ:\n"
f"1. **๋Œ€ํ™” ์Šคํƒ€์ผ**: ์‹ค์ œ ๋ผ๋””์˜ค ๋Œ€๋‹ด์ฒ˜๋Ÿผ ์•„์ฃผ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ํŽธ์•ˆํ•œ ๊ตฌ์–ด์ฒด ์‚ฌ์šฉ\n"
f"2. **ํ™”์ž ์—ญํ• **:\n"
f" - ์ค€์ˆ˜: ์ง„ํ–‰์ž/ํ˜ธ์ŠคํŠธ (์ฃผ๋กœ ์งˆ๋ฌธํ•˜๊ณ  ๋Œ€ํ™”๋ฅผ ์ด๋Œ์–ด๊ฐ)\n"
f" - ๋ฏผํ˜ธ: ์ „๋ฌธ๊ฐ€ (์งˆ๋ฌธ์— ๋‹ตํ•˜๊ณ  ์„ค๋ช…ํ•จ)\n"
f"3. **๋Œ€ํ™” ํŒจํ„ด**:\n"
f" - ์ค€์ˆ˜๋Š” ์ฃผ๋กœ ์งง์€ ์งˆ๋ฌธ์ด๋‚˜ ๋ฆฌ์•ก์…˜ (\"์•„, ๊ทธ๋ ‡๊ตฐ์š”\", \"ํฅ๋ฏธ๋กญ๋„ค์š”\", \"๊ทธ๋Ÿผ ~๋Š” ์–ด๋–ค๊ฐ€์š”?\")\n"
f" - ๋ฏผํ˜ธ๋Š” 1-2๋ฌธ์žฅ์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ๋‹ต๋ณ€\n"
f" - ์ ˆ๋Œ€ ํ•œ ์‚ฌ๋žŒ์ด 3๋ฌธ์žฅ ์ด์ƒ ์—ฐ์†์œผ๋กœ ๋งํ•˜์ง€ ์•Š์Œ\n"
f"4. **์ž์—ฐ์Šค๋Ÿฌ์›€**:\n"
f" - \"์Œ...\", \"์•„...\", \"๋„ค,\" ๊ฐ™์€ ์ถ”์ž„์ƒˆ ์‚ฌ์šฉ\n"
f" - ๋•Œ๋กœ๋Š” ์ƒ๋Œ€๋ฐฉ ๋ง์— ์งง๊ฒŒ ๋ฐ˜์‘ (\"๋งž์•„์š”\", \"๊ทธ๋ ‡์ฃ \")\n"
f"5. **ํ•„์ˆ˜ ๊ทœ์น™**: ์„œ๋กœ ์กด๋Œ“๋ง ์‚ฌ์šฉ, 12-15ํšŒ ๋Œ€ํ™” ๊ตํ™˜\n\n"
f"JSON ํ˜•์‹์œผ๋กœ๋งŒ ๋ฐ˜ํ™˜:\n{template}"
)
return base_prompt
else:
# ์˜์–ด ํ…œํ”Œ๋ฆฟ๋„ ํ™•์žฅ
template = """
{
"conversation": [
{"speaker": "Alex", "text": ""},
{"speaker": "Jordan", "text": ""},
{"speaker": "Alex", "text": ""},
{"speaker": "Jordan", "text": ""},
{"speaker": "Alex", "text": ""},
{"speaker": "Jordan", "text": ""},
{"speaker": "Alex", "text": ""},
{"speaker": "Jordan", "text": ""},
{"speaker": "Alex", "text": ""},
{"speaker": "Jordan", "text": ""},
{"speaker": "Alex", "text": ""},
{"speaker": "Jordan", "text": ""}
]
}
"""
context_part = ""
if search_context:
context_part = f"# Latest Information:\n{search_context}\n"
base_prompt = (
f"# Content:\n{text}\n\n"
f"{context_part}"
f"Create a natural radio talk show conversation.\n\n"
f"## Key Guidelines:\n"
f"1. **Style**: Natural, conversational English like a real radio show\n"
f"2. **Roles**:\n"
f" - Alex: Host (asks questions, guides conversation)\n"
f" - Jordan: Expert (answers, explains)\n"
f"3. **Pattern**:\n"
f" - Alex mostly asks short questions or reacts (\"I see\", \"Interesting\", \"What about...?\")\n"
f" - Jordan gives brief 1-2 sentence answers\n"
f" - Never more than 2-3 sentences per turn\n"
f"4. **Natural flow**:\n"
f" - Use fillers like \"Well,\" \"You know,\" \"Actually,\"\n"
f" - Short reactions (\"Right\", \"Exactly\")\n"
f"5. **Length**: 12-15 exchanges total\n\n"
f"Return JSON only:\n{template}"
)
return base_prompt
def _build_messages_for_local(self, text: str, language: str = "English", search_context: str = "") -> List[Dict]:
"""Build messages for local LLM with enhanced radio talk show style"""
if language == "Korean":
system_message = (
"๋‹น์‹ ์€ ํ•œ๊ตญ ์ตœ๊ณ ์˜ ๋ผ๋””์˜ค ๋Œ€๋‹ด ํ”„๋กœ๊ทธ๋žจ ์ž‘๊ฐ€์ž…๋‹ˆ๋‹ค. "
"์‹ค์ œ ๋ผ๋””์˜ค ๋ฐฉ์†ก์ฒ˜๋Ÿผ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ์ƒ๋™๊ฐ ์žˆ๋Š” ๋Œ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค.\n\n"
"ํ•ต์‹ฌ ์›์น™:\n"
"1. ๋ผ๋””์˜ค ์ง„ํ–‰์ž(์ค€์ˆ˜)๋Š” ์ฃผ๋กœ ์งง์€ ์งˆ๋ฌธ๊ณผ ๋ฆฌ์•ก์…˜์œผ๋กœ ๋Œ€ํ™”๋ฅผ ์ด๋Œ์–ด๊ฐ‘๋‹ˆ๋‹ค\n"
"2. ์ „๋ฌธ๊ฐ€(๋ฏผํ˜ธ)๋Š” ์งˆ๋ฌธ์— ๊ฐ„๊ฒฐํ•˜๊ณ  ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ๋‹ตํ•ฉ๋‹ˆ๋‹ค\n"
"3. ํ•œ ๋ฒˆ์— ๋„ˆ๋ฌด ๋งŽ์€ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜์ง€ ์•Š๊ณ , ๋Œ€ํ™”๋ฅผ ํ†ตํ•ด ์ ์ง„์ ์œผ๋กœ ํ’€์–ด๊ฐ‘๋‹ˆ๋‹ค\n"
"4. \"์Œ...\", \"์•„...\", \"๋„ค,\" ๋“ฑ ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ตฌ์–ด์ฒด ํ‘œํ˜„์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค\n"
"5. ์ฒญ์ทจ์ž๊ฐ€ ๋ผ๋””์˜ค๋ฅผ ๋“ฃ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ชฐ์ž…ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ƒ์ƒํ•˜๊ฒŒ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค\n"
"6. ๋ฐ˜๋“œ์‹œ ์„œ๋กœ ์กด๋Œ“๋ง์„ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ •์ค‘ํ•˜๋ฉด์„œ๋„ ์นœ๊ทผํ•œ ํ†ค์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค"
)
else:
system_message = (
"You are an expert radio talk show scriptwriter who creates engaging, "
"natural conversations that sound like real radio broadcasts.\n\n"
"Key principles:\n"
"1. The host (Alex) mainly asks short questions and gives reactions to guide the conversation\n"
"2. The expert (Jordan) answers concisely and clearly\n"
"3. Information is revealed gradually through dialogue, not in long monologues\n"
"4. Use natural speech patterns with fillers like 'Well,' 'You know,' etc.\n"
"5. Make it sound like an actual radio show that listeners would enjoy\n"
"6. Keep each turn brief - no more than 2-3 sentences"
)
return [
{"role": "system", "content": system_message},
{"role": "user", "content": self._build_prompt(text, language, search_context)}
]
@spaces.GPU(duration=120)
def extract_conversation_local(self, text: str, language: str = "English", progress=None) -> Dict:
"""Extract conversation using new local LLM with enhanced search and style"""
try:
# ๊ฒ€์ƒ‰ ์ปจํ…์ŠคํŠธ ์ƒ์„ฑ (ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜์ด ์•„๋‹Œ ๊ฒฝ์šฐ)
search_context = ""
if BRAVE_KEY and not text.startswith("Keyword-based content:"):
try:
keywords = extract_keywords_for_search(text, language)
if keywords:
search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
search_context = format_search_results(search_query)
print(f"Search context added for: {search_query}")
except Exception as e:
print(f"Search failed, continuing without context: {e}")
# ๋จผ์ € ์ƒˆ๋กœ์šด ๋กœ์ปฌ LLM ์‹œ๋„
self.initialize_local_mode()
chat_template = self._get_messages_formatter_type(self.config.local_model_name)
provider = LlamaCppPythonProvider(self.local_llm)
# ๊ฐ•ํ™”๋œ ๋ผ๋””์˜ค ์Šคํƒ€์ผ ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€
if language == "Korean":
system_message = (
"๋‹น์‹ ์€ ํ•œ๊ตญ์˜ ์ธ๊ธฐ ๋ผ๋””์˜ค ๋Œ€๋‹ด ํ”„๋กœ๊ทธ๋žจ ์ „๋ฌธ ์ž‘๊ฐ€์ž…๋‹ˆ๋‹ค. "
"์ฒญ์ทจ์ž๋“ค์ด ์‹ค์ œ ๋ผ๋””์˜ค๋ฅผ ๋“ฃ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ชฐ์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™”๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.\n\n"
"์ž‘์„ฑ ๊ทœ์น™:\n"
"1. ์ง„ํ–‰์ž(์ค€์ˆ˜)๋Š” ์ฃผ๋กœ ์งง์€ ์งˆ๋ฌธ์œผ๋กœ ๋Œ€ํ™”๋ฅผ ์ด๋Œ์–ด๊ฐ€์„ธ์š” (\"๊ทธ๋ ‡๊ตฐ์š”\", \"์–ด๋–ค ์ ์ด ํŠน๋ณ„ํ•œ๊ฐ€์š”?\", \"์ฒญ์ทจ์ž๋ถ„๋“ค์ด ๊ถ๊ธˆํ•ดํ•˜์‹ค ๊ฒƒ ๊ฐ™์€๋ฐ์š”\")\n"
"2. ์ „๋ฌธ๊ฐ€(๋ฏผํ˜ธ)๋Š” 1-2๋ฌธ์žฅ์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•˜์„ธ์š”\n"
"3. ์ ˆ๋Œ€ ํ•œ ์‚ฌ๋žŒ์ด 3๋ฌธ์žฅ ์ด์ƒ ์—ฐ์†์œผ๋กœ ๋งํ•˜์ง€ ๋งˆ์„ธ์š”\n"
"4. ๊ตฌ์–ด์ฒด์™€ ์ถ”์ž„์ƒˆ๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์‚ฌ์šฉํ•˜์„ธ์š”\n"
"5. ๋ฐ˜๋“œ์‹œ ์„œ๋กœ ์กด๋Œ“๋ง์„ ์‚ฌ์šฉํ•˜์„ธ์š”\n"
"6. 12-15ํšŒ์˜ ๋Œ€ํ™” ๊ตํ™˜์œผ๋กœ ๊ตฌ์„ฑํ•˜์„ธ์š”\n"
"7. JSON ํ˜•์‹์œผ๋กœ๋งŒ ์‘๋‹ตํ•˜์„ธ์š”"
)
else:
system_message = (
"You are a professional radio talk show scriptwriter creating engaging, "
"natural conversations that sound like real radio broadcasts.\n\n"
"Writing rules:\n"
"1. Host (Alex) mainly asks short questions to guide the conversation (\"I see\", \"What makes it special?\", \"Our listeners might wonder...\")\n"
"2. Expert (Jordan) answers in 1-2 concise sentences\n"
"3. Never have one person speak more than 2-3 sentences at once\n"
"4. Use natural speech patterns and fillers\n"
"5. Create 12-15 conversation exchanges\n"
"6. Respond only in JSON format"
)
agent = LlamaCppAgent(
provider,
system_prompt=system_message,
predefined_messages_formatter_type=chat_template,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = 0.85 # ์•ฝ๊ฐ„ ๋†’์—ฌ์„œ ๋” ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™” ์ƒ์„ฑ
settings.top_k = 40
settings.top_p = 0.95
settings.max_tokens = self.config.max_tokens # ์ฆ๊ฐ€๋œ ํ† ํฐ ์ˆ˜ ์‚ฌ์šฉ
settings.repeat_penalty = 1.1
settings.stream = False
messages = BasicChatHistory()
prompt = self._build_prompt(text, language, search_context)
response = agent.get_chat_response(
prompt,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
print_output=False
)
# JSON ํŒŒ์‹ฑ
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, response)
if json_match:
conversation_data = json.loads(json_match.group())
# ๋Œ€ํ™” ๊ธธ์ด ํ™•์ธ ๋ฐ ์กฐ์ •
if len(conversation_data["conversation"]) < self.config.min_conversation_turns:
print(f"Conversation too short ({len(conversation_data['conversation'])} turns), regenerating...")
# ์žฌ์‹œ๋„ ๋กœ์ง ์ถ”๊ฐ€ ๊ฐ€๋Šฅ
return conversation_data
else:
raise ValueError("No valid JSON found in local LLM response")
except Exception as e:
print(f"Local LLM failed: {e}, falling back to legacy local method")
return self.extract_conversation_legacy_local(text, language, progress, search_context)
@spaces.GPU(duration=120)
def extract_conversation_legacy_local(self, text: str, language: str = "English", progress=None, search_context: str = "") -> Dict:
"""Extract conversation using legacy local model with enhanced style"""
try:
self.initialize_legacy_local_mode()
# ๊ฐ•ํ™”๋œ ๋ผ๋””์˜ค ์Šคํƒ€์ผ ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€
if language == "Korean":
system_message = (
"๋‹น์‹ ์€ ๋ผ๋””์˜ค ๋Œ€๋‹ด ํ”„๋กœ๊ทธ๋žจ ์ž‘๊ฐ€์ž…๋‹ˆ๋‹ค. "
"์ง„ํ–‰์ž(์ค€์ˆ˜)๋Š” ์งง์€ ์งˆ๋ฌธ์œผ๋กœ, ์ „๋ฌธ๊ฐ€(๋ฏผํ˜ธ)๋Š” ๊ฐ„๊ฒฐํ•œ ๋‹ต๋ณ€์œผ๋กœ "
"์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™”๋ฅผ ๋งŒ๋“œ์„ธ์š”. ์„œ๋กœ ์กด๋Œ“๋ง์„ ์‚ฌ์šฉํ•˜๊ณ , "
"ํ•œ ๋ฒˆ์— 2-3๋ฌธ์žฅ ์ด๋‚ด๋กœ ๋งํ•˜์„ธ์š”. 12-15ํšŒ ๋Œ€ํ™” ๊ตํ™˜์œผ๋กœ ๊ตฌ์„ฑํ•˜์„ธ์š”."
)
else:
system_message = (
"You are a radio talk show scriptwriter. "
"Create natural dialogue where the host (Alex) asks short questions "
"and the expert (Jordan) gives brief answers. "
"Keep each turn to 2-3 sentences max. Create 12-15 exchanges."
)
chat = [
{"role": "system", "content": system_message},
{"role": "user", "content": self._build_prompt(text, language, search_context)}
]
terminators = [
self.legacy_tokenizer.eos_token_id,
self.legacy_tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
messages = self.legacy_tokenizer.apply_chat_template(
chat, tokenize=False, add_generation_prompt=True
)
model_inputs = self.legacy_tokenizer([messages], return_tensors="pt").to(self.device)
streamer = TextIteratorStreamer(
self.legacy_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=self.config.max_new_tokens, # ์ฆ๊ฐ€๋œ ํ† ํฐ ์ˆ˜ ์‚ฌ์šฉ
do_sample=True,
temperature=0.85,
eos_token_id=terminators,
)
t = Thread(target=self.legacy_local_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, partial_text)
if json_match:
return json.loads(json_match.group())
else:
raise ValueError("No valid JSON found in legacy local response")
except Exception as e:
print(f"Legacy local model also failed: {e}")
# Return enhanced default template
if language == "Korean":
return self._get_default_korean_conversation()
else:
return self._get_default_english_conversation()
def _get_default_korean_conversation(self) -> Dict:
"""๋” ๊ธด ๊ธฐ๋ณธ ํ•œ๊ตญ์–ด ๋Œ€ํ™” ํ…œํ”Œ๋ฆฟ"""
return {
"conversation": [
{"speaker": "์ค€์ˆ˜", "text": "์•ˆ๋…•ํ•˜์„ธ์š”, ์—ฌ๋Ÿฌ๋ถ„! ์˜ค๋Š˜๋„ ์ €ํฌ ํŒŸ์บ์ŠคํŠธ๋ฅผ ์ฐพ์•„์ฃผ์…”์„œ ์ •๋ง ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค."},
{"speaker": "๋ฏผํ˜ธ", "text": "๋„ค, ์•ˆ๋…•ํ•˜์„ธ์š”! ์˜ค๋Š˜ ์ •๋ง ํฅ๋ฏธ๋กœ์šด ์ฃผ์ œ๋ฅผ ์ค€๋น„ํ–ˆ์Šต๋‹ˆ๋‹ค."},
{"speaker": "์ค€์ˆ˜", "text": "์•„, ๊ทธ๋ž˜์š”? ์–ด๋–ค ๋‚ด์šฉ์ธ์ง€ ์ •๋ง ๊ถ๊ธˆํ•œ๋ฐ์š”?"},
{"speaker": "๋ฏผํ˜ธ", "text": "์˜ค๋Š˜์€ ์ตœ๊ทผ ๋งŽ์€ ๋ถ„๋“ค์ด ๊ด€์‹ฌ์„ ๊ฐ€์ง€๊ณ  ๊ณ„์‹  ์ฃผ์ œ์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ•ด๋ณผ๊นŒ ํ•ด์š”."},
{"speaker": "์ค€์ˆ˜", "text": "์Œ, ์š”์ฆ˜ ์ •๋ง ํ™”์ œ๊ฐ€ ๋˜๊ณ  ์žˆ์ฃ . ๊ตฌ์ฒด์ ์œผ๋กœ ์–ด๋–ค ์ธก๋ฉด์„ ๋‹ค๋ฃฐ ์˜ˆ์ •์ด์‹ ๊ฐ€์š”?"},
{"speaker": "๋ฏผํ˜ธ", "text": "๋„ค, ๋จผ์ € ๊ธฐ๋ณธ์ ์ธ ๊ฐœ๋…๋ถ€ํ„ฐ ์ฐจ๊ทผ์ฐจ๊ทผ ์„ค๋ช…๋“œ๋ฆฌ๊ณ , ์‹ค์ƒํ™œ์— ์–ด๋–ป๊ฒŒ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์•Œ์•„๋ณผ๊ฒŒ์š”."},
{"speaker": "์ค€์ˆ˜", "text": "์ข‹์•„์š”! ์ฒญ์ทจ์ž๋ถ„๋“ค๋„ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•ด์ฃผ์‹ค ๊ฑฐ์ฃ ?"},
{"speaker": "๋ฏผํ˜ธ", "text": "๋ฌผ๋ก ์ด์ฃ . ์ตœ๋Œ€ํ•œ ์‰ฝ๊ณ  ์žฌ๋ฏธ์žˆ๊ฒŒ ํ’€์–ด์„œ ์„ค๋ช…๋“œ๋ฆด๊ฒŒ์š”."},
{"speaker": "์ค€์ˆ˜", "text": "๊ทธ๋Ÿผ ๋ณธ๊ฒฉ์ ์œผ๋กœ ์‹œ์ž‘ํ•ด๋ณผ๊นŒ์š”?"},
{"speaker": "๋ฏผํ˜ธ", "text": "๋„ค, ์ข‹์Šต๋‹ˆ๋‹ค. ์šฐ์„  ์ด ์ฃผ์ œ๊ฐ€ ์™œ ์ค‘์š”ํ•œ์ง€๋ถ€ํ„ฐ ๋ง์”€๋“œ๋ฆด๊ฒŒ์š”."},
{"speaker": "์ค€์ˆ˜", "text": "์•„, ๋งž์•„์š”. ๊ทธ ๋ถ€๋ถ„์ด ์ •๋ง ์ค‘์š”ํ•˜์ฃ ."},
{"speaker": "๋ฏผํ˜ธ", "text": "์ตœ๊ทผ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด ์ •๋ง ๋†€๋ผ์šด ๋ฐœ๊ฒฌ๋“ค์ด ๋งŽ์•˜์–ด์š”."}
]
}
def _get_default_english_conversation(self) -> Dict:
"""Enhanced default English conversation template"""
return {
"conversation": [
{"speaker": "Alex", "text": "Welcome everyone to our podcast! We have a fascinating topic today."},
{"speaker": "Jordan", "text": "Thanks, Alex. I'm excited to dive into this subject with our listeners."},
{"speaker": "Alex", "text": "So, what makes this topic particularly relevant right now?"},
{"speaker": "Jordan", "text": "Well, there have been some significant developments recently that everyone should know about."},
{"speaker": "Alex", "text": "Interesting! Can you break it down for us?"},
{"speaker": "Jordan", "text": "Absolutely. Let me start with the basics and build from there."},
{"speaker": "Alex", "text": "That sounds perfect. Our listeners will appreciate that approach."},
{"speaker": "Jordan", "text": "So, first, let's understand what we're really talking about here."},
{"speaker": "Alex", "text": "Right, the fundamentals are crucial."},
{"speaker": "Jordan", "text": "Exactly. And once we grasp that, the rest becomes much clearer."},
{"speaker": "Alex", "text": "I'm already learning something new! What's next?"},
{"speaker": "Jordan", "text": "Now, here's where it gets really interesting..."}
]
}
def extract_conversation_api(self, text: str, language: str = "English") -> Dict:
"""Extract conversation using API with enhanced radio style"""
if not self.llm_client:
raise RuntimeError("API mode not initialized")
try:
# ๊ฒ€์ƒ‰ ์ปจํ…์ŠคํŠธ ์ƒ์„ฑ
search_context = ""
if BRAVE_KEY and not text.startswith("Keyword-based content:"):
try:
keywords = extract_keywords_for_search(text, language)
if keywords:
search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
search_context = format_search_results(search_query)
print(f"Search context added for: {search_query}")
except Exception as e:
print(f"Search failed, continuing without context: {e}")
# ๊ฐ•ํ™”๋œ ๋ผ๋””์˜ค ์Šคํƒ€์ผ ํ”„๋กฌํ”„ํŠธ
if language == "Korean":
system_message = (
"๋‹น์‹ ์€ ํ•œ๊ตญ์˜ ์ธ๊ธฐ ๋ผ๋””์˜ค ๋Œ€๋‹ด ํ”„๋กœ๊ทธ๋žจ ์ž‘๊ฐ€์ž…๋‹ˆ๋‹ค. "
"์‹ค์ œ ๋ผ๋””์˜ค ๋ฐฉ์†ก์ฒ˜๋Ÿผ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ํŽธ์•ˆํ•œ ๋Œ€ํ™”๋ฅผ ๋งŒ๋“œ์„ธ์š”.\n"
"์ค€์ˆ˜(์ง„ํ–‰์ž)๋Š” ์ฃผ๋กœ ์งง์€ ์งˆ๋ฌธ๊ณผ ๋ฆฌ์•ก์…˜์œผ๋กœ ๋Œ€ํ™”๋ฅผ ์ด๋Œ๊ณ , "
"๋ฏผํ˜ธ(์ „๋ฌธ๊ฐ€)๋Š” 1-2๋ฌธ์žฅ์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ฉ๋‹ˆ๋‹ค. "
"๊ตฌ์–ด์ฒด์™€ ์ถ”์ž„์ƒˆ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ๋ฐ˜๋“œ์‹œ ์„œ๋กœ ์กด๋Œ“๋ง์„ ์‚ฌ์šฉํ•˜์„ธ์š”. "
"12-15ํšŒ์˜ ๋Œ€ํ™” ๊ตํ™˜์œผ๋กœ ๊ตฌ์„ฑํ•˜์„ธ์š”."
)
else:
system_message = (
"You are a professional radio talk show scriptwriter. "
"Create natural, engaging dialogue like a real radio broadcast. "
"Alex (host) mainly asks short questions and gives reactions, "
"while Jordan (expert) answers in 1-2 concise sentences. "
"Use conversational language with natural fillers. "
"Create 12-15 conversation exchanges."
)
chat_completion = self.llm_client.chat.completions.create(
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": self._build_prompt(text, language, search_context)}
],
model=self.config.api_model_name,
temperature=0.85,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
return json.loads(json_match.group())
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {e}")
def parse_conversation_text(self, conversation_text: str) -> Dict:
"""Parse conversation text back to JSON format"""
lines = conversation_text.strip().split('\n')
conversation_data = {"conversation": []}
for line in lines:
if ':' in line:
speaker, text = line.split(':', 1)
conversation_data["conversation"].append({
"speaker": speaker.strip(),
"text": text.strip()
})
return conversation_data
async def text_to_speech_edge(self, conversation_json: Dict, language: str = "English") -> Tuple[str, str]:
"""Convert text to speech using Edge TTS"""
output_dir = Path(self._create_output_directory())
filenames = []
try:
# ์–ธ์–ด๋ณ„ ์Œ์„ฑ ์„ค์ • - ํ•œ๊ตญ์–ด๋Š” ๋ชจ๋‘ ๋‚จ์„ฑ ์Œ์„ฑ
if language == "Korean":
voices = [
"ko-KR-HyunsuNeural", # ๋‚จ์„ฑ ์Œ์„ฑ 1 (์ฐจ๋ถ„ํ•˜๊ณ  ์‹ ๋ขฐ๊ฐ ์žˆ๋Š”)
"ko-KR-InJoonNeural" # ๋‚จ์„ฑ ์Œ์„ฑ 2 (ํ™œ๊ธฐ์ฐจ๊ณ  ์นœ๊ทผํ•œ)
]
else:
voices = [
"en-US-AndrewMultilingualNeural", # ๋‚จ์„ฑ ์Œ์„ฑ 1
"en-US-BrianMultilingualNeural" # ๋‚จ์„ฑ ์Œ์„ฑ 2
]
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.wav"
voice = voices[i % len(voices)]
tmp_path = await self._generate_audio_edge(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
# Combine audio files
final_output = os.path.join(output_dir, "combined_output.wav")
self._combine_audio_files(filenames, final_output)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio_edge(self, text: str, voice: str) -> str:
"""Generate audio using Edge TTS"""
if not text.strip():
raise ValueError("Text cannot be empty")
voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
communicate = edge_tts.Communicate(text, voice_short_name)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
@spaces.GPU(duration=60)
def text_to_speech_spark(self, conversation_json: Dict, language: str = "English", progress=None) -> Tuple[str, str]:
"""Convert text to speech using Spark TTS CLI"""
if not SPARK_AVAILABLE or not self.spark_model_dir:
raise RuntimeError("Spark TTS not available")
try:
output_dir = self._create_output_directory()
audio_files = []
# Create different voice characteristics for different speakers
if language == "Korean":
voice_configs = [
{"prompt_text": "์•ˆ๋…•ํ•˜์„ธ์š”, ์˜ค๋Š˜ ํŒŸ์บ์ŠคํŠธ ์ง„ํ–‰์„ ๋งก์€ ์ค€์ˆ˜์ž…๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๊ณผ ํ•จ๊ป˜ ํฅ๋ฏธ๋กœ์šด ์ด์•ผ๊ธฐ๋ฅผ ๋‚˜๋ˆ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.", "gender": "male"},
{"prompt_text": "์•ˆ๋…•ํ•˜์„ธ์š”, ์ €๋Š” ์˜ค๋Š˜ ์ด ์ฃผ์ œ์— ๋Œ€ํ•ด ์„ค๋ช…๋“œ๋ฆด ๋ฏผํ˜ธ์ž…๋‹ˆ๋‹ค. ์‰ฝ๊ณ  ์žฌ๋ฏธ์žˆ๊ฒŒ ์„ค๋ช…๋“œ๋ฆด๊ฒŒ์š”.", "gender": "male"}
]
else:
voice_configs = [
{"prompt_text": "Hello everyone, I'm Alex, your host for today's podcast. Let's explore this fascinating topic together.", "gender": "male"},
{"prompt_text": "Hi, I'm Jordan. I'm excited to share my insights on this subject with you all today.", "gender": "male"}
]
for i, turn in enumerate(conversation_json["conversation"]):
text = turn["text"]
if not text.strip():
continue
# Use different voice config for each speaker
voice_config = voice_configs[i % len(voice_configs)]
output_file = os.path.join(output_dir, f"spark_output_{i}.wav")
# Run Spark TTS CLI inference
cmd = [
"python", "-m", "cli.inference",
"--text", text,
"--device", "0" if torch.cuda.is_available() else "cpu",
"--save_dir", output_dir,
"--model_dir", self.spark_model_dir,
"--prompt_text", voice_config["prompt_text"],
"--output_name", f"spark_output_{i}.wav"
]
try:
# Run the command
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=60,
cwd="." # Make sure we're in the right directory
)
if result.returncode == 0:
audio_files.append(output_file)
else:
print(f"Spark TTS error for turn {i}: {result.stderr}")
# Create a short silence as fallback
silence = np.zeros(int(22050 * 1.0)) # 1 second of silence
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except subprocess.TimeoutExpired:
print(f"Spark TTS timeout for turn {i}")
# Create silence as fallback
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except Exception as e:
print(f"Error running Spark TTS for turn {i}: {e}")
# Create silence as fallback
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
# Combine all audio files
if audio_files:
final_output = os.path.join(output_dir, "spark_combined.wav")
self._combine_audio_files(audio_files, final_output)
else:
raise RuntimeError("No audio files generated")
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech with Spark TTS: {e}")
@spaces.GPU(duration=60)
def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
"""Convert text to speech using MeloTTS"""
if not MELO_AVAILABLE or not self.melo_models:
raise RuntimeError("MeloTTS not available")
speakers = ["EN-Default", "EN-US"]
combined_audio = AudioSegment.empty()
for i, turn in enumerate(conversation_json["conversation"]):
bio = io.BytesIO()
text = turn["text"]
speaker = speakers[i % 2]
speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
# Generate audio
self.melo_models["EN"].tts_to_file(
text, speaker_id, bio, speed=1.0,
pbar=progress.tqdm if progress else None,
format="wav"
)
bio.seek(0)
audio_segment = AudioSegment.from_file(bio, format="wav")
combined_audio += audio_segment
# Save final audio
final_audio_path = "melo_podcast.mp3"
combined_audio.export(final_audio_path, format="mp3")
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_audio_path, conversation_text
def _create_output_directory(self) -> str:
"""Create a unique output directory"""
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def _combine_audio_files(self, filenames: List[str], output_file: str) -> None:
"""Combine multiple audio files into one"""
if not filenames:
raise ValueError("No input files provided")
try:
audio_segments = []
for filename in filenames:
if os.path.exists(filename):
audio_segment = AudioSegment.from_file(filename)
audio_segments.append(audio_segment)
if audio_segments:
combined = sum(audio_segments)
combined.export(output_file, format="wav")
# Clean up temporary files
for filename in filenames:
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
# Global converter instance
converter = UnifiedAudioConverter(ConversationConfig())
async def synthesize(article_input, input_type: str = "URL", mode: str = "Local", tts_engine: str = "Edge-TTS", language: str = "English"):
"""Main synthesis function - handles URL, PDF, and Keyword inputs"""
try:
# Extract text based on input type
if input_type == "URL":
if not article_input or not isinstance(article_input, str):
return "Please provide a valid URL.", None
text = converter.fetch_text(article_input)
elif input_type == "PDF":
if not article_input:
return "Please upload a PDF file.", None
text = converter.extract_text_from_pdf(article_input)
else: # Keyword
if not article_input or not isinstance(article_input, str):
return "Please provide a keyword or topic.", None
# ํ‚ค์›Œ๋“œ๋กœ ๊ฒ€์ƒ‰ํ•˜์—ฌ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ
text = search_and_compile_content(article_input, language)
text = f"Keyword-based content:\n{text}" # ๋งˆ์ปค ์ถ”๊ฐ€
# Limit text to max words
words = text.split()
if len(words) > converter.config.max_words:
text = " ".join(words[:converter.config.max_words])
# Extract conversation based on mode
if mode == "Local":
# ๋กœ์ปฌ ๋ชจ๋“œ๊ฐ€ ๊ธฐ๋ณธ (์ƒˆ๋กœ์šด Local LLM ์‚ฌ์šฉ)
try:
conversation_json = converter.extract_conversation_local(text, language)
except Exception as e:
print(f"Local mode failed: {e}, trying API fallback")
# API ํด๋ฐฑ
api_key = os.environ.get("TOGETHER_API_KEY")
if api_key:
converter.initialize_api_mode(api_key)
conversation_json = converter.extract_conversation_api(text, language)
else:
raise RuntimeError("Local mode failed and no API key available for fallback")
else: # API mode (now secondary)
api_key = os.environ.get("TOGETHER_API_KEY")
if not api_key:
print("API key not found, falling back to local mode")
conversation_json = converter.extract_conversation_local(text, language)
else:
try:
converter.initialize_api_mode(api_key)
conversation_json = converter.extract_conversation_api(text, language)
except Exception as e:
print(f"API mode failed: {e}, falling back to local mode")
conversation_json = converter.extract_conversation_local(text, language)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return conversation_text, None
except Exception as e:
return f"Error: {str(e)}", None
async def regenerate_audio(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
"""Regenerate audio from edited conversation text"""
if not conversation_text.strip():
return "Please provide conversation text.", None
try:
# Parse the conversation text back to JSON format
conversation_json = converter.parse_conversation_text(conversation_text)
if not conversation_json["conversation"]:
return "No valid conversation found in the text.", None
# ํ•œ๊ตญ์–ด์ธ ๊ฒฝ์šฐ Edge-TTS๋งŒ ์‚ฌ์šฉ (๋‹ค๋ฅธ TTS๋Š” ํ•œ๊ตญ์–ด ์ง€์›์ด ์ œํ•œ์ )
if language == "Korean" and tts_engine != "Edge-TTS":
tts_engine = "Edge-TTS" # ์ž๋™์œผ๋กœ Edge-TTS๋กœ ๋ณ€๊ฒฝ
# Generate audio based on TTS engine
if tts_engine == "Edge-TTS":
output_file, _ = await converter.text_to_speech_edge(conversation_json, language)
elif tts_engine == "Spark-TTS":
if not SPARK_AVAILABLE:
return "Spark TTS not available. Please install required dependencies and clone the Spark-TTS repository.", None
converter.initialize_spark_tts()
output_file, _ = converter.text_to_speech_spark(conversation_json, language)
else: # MeloTTS
if not MELO_AVAILABLE:
return "MeloTTS not available. Please install required dependencies.", None
if language == "Korean":
return "MeloTTS does not support Korean. Please use Edge-TTS for Korean.", None
converter.initialize_melo_tts()
output_file, _ = converter.text_to_speech_melo(conversation_json)
return "Audio generated successfully!", output_file
except Exception as e:
return f"Error generating audio: {str(e)}", None
def synthesize_sync(article_input, input_type: str = "URL", mode: str = "Local", tts_engine: str = "Edge-TTS", language: str = "English"):
"""Synchronous wrapper for async synthesis"""
return asyncio.run(synthesize(article_input, input_type, mode, tts_engine, language))
def regenerate_audio_sync(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
"""Synchronous wrapper for async audio regeneration"""
return asyncio.run(regenerate_audio(conversation_text, tts_engine, language))
def update_tts_engine_for_korean(language):
"""ํ•œ๊ตญ์–ด ์„ ํƒ ์‹œ TTS ์—”์ง„ ์˜ต์…˜ ์—…๋ฐ์ดํŠธ"""
if language == "Korean":
return gr.Radio(
choices=["Edge-TTS"],
value="Edge-TTS",
label="TTS Engine",
info="ํ•œ๊ตญ์–ด๋Š” Edge-TTS๋งŒ ์ง€์›๋ฉ๋‹ˆ๋‹ค",
interactive=False
)
else:
return gr.Radio(
choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
value="Edge-TTS",
label="TTS Engine",
info="Edge-TTS: Cloud-based, natural voices | Spark-TTS: Local AI model | MeloTTS: Local, requires GPU",
interactive=True
)
def toggle_input_visibility(input_type):
"""Toggle visibility of URL input, file upload, and keyword input based on input type"""
if input_type == "URL":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif input_type == "PDF":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else: # Keyword
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
# ๋ชจ๋ธ ์ดˆ๊ธฐํ™” (์•ฑ ์‹œ์ž‘ ์‹œ)
if LLAMA_CPP_AVAILABLE:
try:
model_path = hf_hub_download(
repo_id=converter.config.local_model_repo,
filename=converter.config.local_model_name,
local_dir="./models"
)
print(f"Model downloaded to: {model_path}")
except Exception as e:
print(f"Failed to download model at startup: {e}")
# Gradio Interface
with gr.Blocks(theme='soft', title="AI Podcast Generator") as demo:
gr.Markdown("# ๐ŸŽ™๏ธ AI Podcast Generator")
gr.Markdown("Convert any article, blog, PDF document, or topic into an engaging podcast conversation!")
# ์ƒ๋‹จ์— ๋กœ์ปฌ LLM ์ƒํƒœ ํ‘œ์‹œ
with gr.Row():
gr.Markdown(f"""
### ๐Ÿค– Enhanced Configuration:
- **Primary**: Local LLM ({converter.config.local_model_name}) - Runs on your device
- **Fallback**: API LLM ({converter.config.api_model_name}) - Used when local fails
- **Status**: {"โœ… Llama CPP Available" if LLAMA_CPP_AVAILABLE else "โŒ Llama CPP Not Available - Install llama-cpp-python"}
- **Conversation Length**: {converter.config.min_conversation_turns}-{converter.config.max_conversation_turns} exchanges (1.5x longer)
- **Search**: {"โœ… Brave Search Enabled" if BRAVE_KEY else "โŒ Brave Search Not Available - Set BSEARCH_API"}
- **New**: ๐ŸŽฏ Keyword input for topic-based podcast generation
""")
with gr.Row():
with gr.Column(scale=3):
# Input type selector - ํ‚ค์›Œ๋“œ ์˜ต์…˜ ์ถ”๊ฐ€
input_type_selector = gr.Radio(
choices=["URL", "PDF", "Keyword"],
value="URL",
label="Input Type",
info="Choose between URL, PDF file upload, or keyword/topic"
)
# URL input
url_input = gr.Textbox(
label="Article URL",
placeholder="Enter the article URL here...",
value="",
visible=True
)
# PDF upload
pdf_input = gr.File(
label="Upload PDF",
file_types=[".pdf"],
visible=False
)
# Keyword input (์ƒˆ๋กœ ์ถ”๊ฐ€)
keyword_input = gr.Textbox(
label="Topic/Keyword",
placeholder="Enter a topic or keyword (e.g., 'AI trends', '์ธ๊ณต์ง€๋Šฅ ์ตœ์‹  ๋™ํ–ฅ')",
value="",
visible=False,
info="The system will search for latest information about this topic"
)
with gr.Column(scale=1):
# ์–ธ์–ด ์„ ํƒ
language_selector = gr.Radio(
choices=["English", "Korean"],
value="English",
label="Language / ์–ธ์–ด",
info="Select output language / ์ถœ๋ ฅ ์–ธ์–ด๋ฅผ ์„ ํƒํ•˜์„ธ์š”"
)
mode_selector = gr.Radio(
choices=["Local", "API"],
value="Local",
label="Processing Mode",
info="Local: Runs on device (Primary) | API: Cloud-based (Fallback)"
)
# TTS ์—”์ง„ ์„ ํƒ
with gr.Group():
gr.Markdown("### TTS Engine Selection")
tts_selector = gr.Radio(
choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
value="Edge-TTS",
label="TTS Engine",
info="Edge-TTS: Cloud-based, natural voices | Spark-TTS: Local AI model | MeloTTS: Local, requires GPU"
)
gr.Markdown("""
**๐Ÿ“ป Radio Talk Show Style:**
- Natural, conversational dialogue
- Host asks short questions
- Expert gives brief, clear answers
- 12-15 conversation exchanges
**๐Ÿ” Keyword Feature:**
- Enter any topic to generate a podcast
- Automatically searches latest information
- Creates engaging discussion from search results
**๐Ÿ‡ฐ๐Ÿ‡ท ํ•œ๊ตญ์–ด ์ง€์›:**
- ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ผ๋””์˜ค ๋Œ€๋‹ด ์Šคํƒ€์ผ
- ์ง„ํ–‰์ž(์ค€์ˆ˜)๊ฐ€ ์งง์€ ์งˆ๋ฌธ์œผ๋กœ ๋Œ€ํ™” ์œ ๋„
- ์ „๋ฌธ๊ฐ€(๋ฏผํ˜ธ)๊ฐ€ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ๋‹ต๋ณ€
- ์ตœ์‹  ์ •๋ณด ์ž๋™ ๊ฒ€์ƒ‰ ๋ฐ ๋ฐ˜์˜
""")
convert_btn = gr.Button("๐ŸŽฏ Generate Conversation / ๋Œ€ํ™” ์ƒ์„ฑ", variant="primary", size="lg")
with gr.Row():
with gr.Column():
conversation_output = gr.Textbox(
label="Generated Conversation (Editable) / ์ƒ์„ฑ๋œ ๋Œ€ํ™” (ํŽธ์ง‘ ๊ฐ€๋Šฅ)",
lines=30, # ๋” ๊ธด ๋Œ€ํ™”๋ฅผ ์œ„ํ•ด ์ฆ๊ฐ€
max_lines=60,
interactive=True,
placeholder="Generated conversation will appear here. You can edit it before generating audio.\n์ƒ์„ฑ๋œ ๋Œ€ํ™”๊ฐ€ ์—ฌ๊ธฐ์— ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค. ์˜ค๋””์˜ค ์ƒ์„ฑ ์ „์— ํŽธ์ง‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.\n\n๋ผ๋””์˜ค ๋Œ€๋‹ด ์Šคํƒ€์ผ๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ง„ํ–‰๋ฉ๋‹ˆ๋‹ค.",
info="Edit the conversation as needed. Format: 'Speaker Name: Text' / ํ•„์š”์— ๋”ฐ๋ผ ๋Œ€ํ™”๋ฅผ ํŽธ์ง‘ํ•˜์„ธ์š”. ํ˜•์‹: 'ํ™”์ž ์ด๋ฆ„: ํ…์ŠคํŠธ'"
)
# ์˜ค๋””์˜ค ์ƒ์„ฑ ๋ฒ„ํŠผ ์ถ”๊ฐ€
with gr.Row():
generate_audio_btn = gr.Button("๐ŸŽ™๏ธ Generate Audio from Text / ํ…์ŠคํŠธ์—์„œ ์˜ค๋””์˜ค ์ƒ์„ฑ", variant="secondary", size="lg")
gr.Markdown("*Edit the conversation above, then click to generate audio / ์œ„์˜ ๋Œ€ํ™”๋ฅผ ํŽธ์ง‘ํ•œ ํ›„ ํด๋ฆญํ•˜์—ฌ ์˜ค๋””์˜ค๋ฅผ ์ƒ์„ฑํ•˜์„ธ์š”*")
with gr.Column():
audio_output = gr.Audio(
label="Podcast Audio / ํŒŸ์บ์ŠคํŠธ ์˜ค๋””์˜ค",
type="filepath",
interactive=False
)
# ์ƒํƒœ ๋ฉ”์‹œ์ง€ ์ถ”๊ฐ€
status_output = gr.Textbox(
label="Status / ์ƒํƒœ",
interactive=False,
visible=True
)
gr.Examples(
examples=[
["https://huggingface.co/blog/openfree/cycle-navigator", "URL", "Local", "Edge-TTS", "English"],
["", "Keyword", "Local", "Edge-TTS", "English"], # Keyword example
["https://huggingface.co/papers/2505.14810", "URL", "Local", "Edge-TTS", "Korean"],
["", "Keyword", "Local", "Edge-TTS", "Korean"], # Korean keyword example
],
inputs=[url_input, input_type_selector, mode_selector, tts_selector, language_selector],
outputs=[conversation_output, status_output],
fn=synthesize_sync,
cache_examples=False,
)
# Input type change handler - ์ˆ˜์ •๋จ
input_type_selector.change(
fn=toggle_input_visibility,
inputs=[input_type_selector],
outputs=[url_input, pdf_input, keyword_input]
)
# ์–ธ์–ด ๋ณ€๊ฒฝ ์‹œ TTS ์—”์ง„ ์˜ต์…˜ ์—…๋ฐ์ดํŠธ
language_selector.change(
fn=update_tts_engine_for_korean,
inputs=[language_selector],
outputs=[tts_selector]
)
# ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ - ์ˆ˜์ •๋œ ๋ถ€๋ถ„
def get_article_input(input_type, url_input, pdf_input, keyword_input):
"""Get the appropriate input based on input type"""
if input_type == "URL":
return url_input
elif input_type == "PDF":
return pdf_input
else: # Keyword
return keyword_input
convert_btn.click(
fn=lambda input_type, url_input, pdf_input, keyword_input, mode, tts, lang: synthesize_sync(
get_article_input(input_type, url_input, pdf_input, keyword_input), input_type, mode, tts, lang
),
inputs=[input_type_selector, url_input, pdf_input, keyword_input, mode_selector, tts_selector, language_selector],
outputs=[conversation_output, status_output]
)
generate_audio_btn.click(
fn=regenerate_audio_sync,
inputs=[conversation_output, tts_selector, language_selector],
outputs=[status_output, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue(api_open=True, default_concurrency_limit=10).launch(
show_api=True,
share=False,
server_name="0.0.0.0",
server_port=7860
)