Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,2 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import asyncio
|
4 |
+
import torch
|
5 |
+
import io
|
6 |
+
import json
|
7 |
+
import re
|
8 |
+
import httpx
|
9 |
+
import tempfile
|
10 |
+
import wave
|
11 |
+
import base64
|
12 |
+
from dataclasses import dataclass
|
13 |
+
from typing import List, Tuple, Dict, Optional
|
14 |
+
from pathlib import Path
|
15 |
+
from threading import Thread
|
16 |
+
from dotenv import load_dotenv
|
17 |
|
18 |
+
# Edge TTS imports
|
19 |
+
import edge_tts
|
20 |
+
from pydub import AudioSegment
|
21 |
+
|
22 |
+
# OpenAI imports
|
23 |
+
from openai import OpenAI
|
24 |
+
|
25 |
+
# Transformers imports (for local mode)
|
26 |
+
from transformers import (
|
27 |
+
AutoModelForCausalLM,
|
28 |
+
AutoTokenizer,
|
29 |
+
TextIteratorStreamer,
|
30 |
+
BitsAndBytesConfig,
|
31 |
+
)
|
32 |
+
|
33 |
+
# MeloTTS imports (for local mode)
|
34 |
+
try:
|
35 |
+
os.system("python -m unidic download")
|
36 |
+
from melo.api import TTS as MeloTTS
|
37 |
+
MELO_AVAILABLE = True
|
38 |
+
except:
|
39 |
+
MELO_AVAILABLE = False
|
40 |
+
|
41 |
+
load_dotenv()
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class ConversationConfig:
|
46 |
+
max_words: int = 6000
|
47 |
+
prefix_url: str = "https://r.jina.ai/"
|
48 |
+
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
|
49 |
+
local_model_name: str = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
50 |
+
|
51 |
+
|
52 |
+
class UnifiedAudioConverter:
|
53 |
+
def __init__(self, config: ConversationConfig):
|
54 |
+
self.config = config
|
55 |
+
self.llm_client = None
|
56 |
+
self.local_model = None
|
57 |
+
self.tokenizer = None
|
58 |
+
self.melo_models = None
|
59 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
|
61 |
+
def initialize_api_mode(self, api_key: str):
|
62 |
+
"""Initialize API mode with Together API"""
|
63 |
+
self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
|
64 |
+
|
65 |
+
def initialize_local_mode(self):
|
66 |
+
"""Initialize local mode with Hugging Face model"""
|
67 |
+
if self.local_model is None:
|
68 |
+
quantization_config = BitsAndBytesConfig(
|
69 |
+
load_in_4bit=True,
|
70 |
+
bnb_4bit_compute_dtype=torch.float16
|
71 |
+
)
|
72 |
+
self.local_model = AutoModelForCausalLM.from_pretrained(
|
73 |
+
self.config.local_model_name,
|
74 |
+
quantization_config=quantization_config
|
75 |
+
)
|
76 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
77 |
+
self.config.local_model_name,
|
78 |
+
revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
|
79 |
+
)
|
80 |
+
|
81 |
+
if MELO_AVAILABLE and self.melo_models is None:
|
82 |
+
self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}
|
83 |
+
|
84 |
+
def fetch_text(self, url: str) -> str:
|
85 |
+
"""Fetch text content from URL"""
|
86 |
+
if not url:
|
87 |
+
raise ValueError("URL cannot be empty")
|
88 |
+
|
89 |
+
if not url.startswith("http://") and not url.startswith("https://"):
|
90 |
+
raise ValueError("URL must start with 'http://' or 'https://'")
|
91 |
+
|
92 |
+
full_url = f"{self.config.prefix_url}{url}"
|
93 |
+
try:
|
94 |
+
response = httpx.get(full_url, timeout=60.0)
|
95 |
+
response.raise_for_status()
|
96 |
+
return response.text
|
97 |
+
except httpx.HTTPError as e:
|
98 |
+
raise RuntimeError(f"Failed to fetch URL: {e}")
|
99 |
+
|
100 |
+
def _build_prompt(self, text: str) -> str:
|
101 |
+
"""Build prompt for conversation generation"""
|
102 |
+
template = """
|
103 |
+
{
|
104 |
+
"conversation": [
|
105 |
+
{"speaker": "", "text": ""},
|
106 |
+
{"speaker": "", "text": ""}
|
107 |
+
]
|
108 |
+
}
|
109 |
+
"""
|
110 |
+
return (
|
111 |
+
f"{text}\n\nConvert the provided text into a short, informative and crisp "
|
112 |
+
f"podcast conversation between two experts. The tone should be "
|
113 |
+
f"professional and engaging. Please adhere to the following "
|
114 |
+
f"format and return ONLY the JSON:\n{template}"
|
115 |
+
)
|
116 |
+
|
117 |
+
def extract_conversation_api(self, text: str) -> Dict:
|
118 |
+
"""Extract conversation using API"""
|
119 |
+
if not self.llm_client:
|
120 |
+
raise RuntimeError("API mode not initialized")
|
121 |
+
|
122 |
+
try:
|
123 |
+
chat_completion = self.llm_client.chat.completions.create(
|
124 |
+
messages=[{"role": "user", "content": self._build_prompt(text)}],
|
125 |
+
model=self.config.model_name,
|
126 |
+
)
|
127 |
+
|
128 |
+
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
|
129 |
+
json_match = re.search(pattern, chat_completion.choices[0].message.content)
|
130 |
+
|
131 |
+
if not json_match:
|
132 |
+
raise ValueError("No valid JSON found in response")
|
133 |
+
|
134 |
+
return json.loads(json_match.group())
|
135 |
+
except Exception as e:
|
136 |
+
raise RuntimeError(f"Failed to extract conversation: {e}")
|
137 |
+
|
138 |
+
def extract_conversation_local(self, text: str, progress=None) -> Dict:
|
139 |
+
"""Extract conversation using local model"""
|
140 |
+
if not self.local_model or not self.tokenizer:
|
141 |
+
raise RuntimeError("Local mode not initialized")
|
142 |
+
|
143 |
+
chat = [{
|
144 |
+
"role": "user",
|
145 |
+
"content": self._build_prompt(text)
|
146 |
+
}]
|
147 |
+
|
148 |
+
terminators = [
|
149 |
+
self.tokenizer.eos_token_id,
|
150 |
+
self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
151 |
+
]
|
152 |
+
|
153 |
+
messages = self.tokenizer.apply_chat_template(
|
154 |
+
chat, tokenize=False, add_generation_prompt=True
|
155 |
+
)
|
156 |
+
model_inputs = self.tokenizer([messages], return_tensors="pt").to(self.device)
|
157 |
+
|
158 |
+
streamer = TextIteratorStreamer(
|
159 |
+
self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
160 |
+
)
|
161 |
+
|
162 |
+
generate_kwargs = dict(
|
163 |
+
model_inputs,
|
164 |
+
streamer=streamer,
|
165 |
+
max_new_tokens=4000,
|
166 |
+
do_sample=True,
|
167 |
+
temperature=0.9,
|
168 |
+
eos_token_id=terminators,
|
169 |
+
)
|
170 |
+
|
171 |
+
t = Thread(target=self.local_model.generate, kwargs=generate_kwargs)
|
172 |
+
t.start()
|
173 |
+
|
174 |
+
partial_text = ""
|
175 |
+
for new_text in streamer:
|
176 |
+
partial_text += new_text
|
177 |
+
|
178 |
+
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
|
179 |
+
json_match = re.search(pattern, partial_text)
|
180 |
+
|
181 |
+
if json_match:
|
182 |
+
return json.loads(json_match.group())
|
183 |
+
else:
|
184 |
+
# Return a default template if no valid JSON found
|
185 |
+
return {
|
186 |
+
"conversation": [
|
187 |
+
{"speaker": "Host", "text": "Welcome to our podcast."},
|
188 |
+
{"speaker": "Guest", "text": "Thank you for having me."}
|
189 |
+
]
|
190 |
+
}
|
191 |
+
|
192 |
+
async def text_to_speech_edge(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
193 |
+
"""Convert text to speech using Edge TTS"""
|
194 |
+
output_dir = Path(self._create_output_directory())
|
195 |
+
filenames = []
|
196 |
+
|
197 |
+
try:
|
198 |
+
for i, turn in enumerate(conversation_json["conversation"]):
|
199 |
+
filename = output_dir / f"output_{i}.wav"
|
200 |
+
voice = voice_1 if i % 2 == 0 else voice_2
|
201 |
+
|
202 |
+
tmp_path = await self._generate_audio_edge(turn["text"], voice)
|
203 |
+
os.rename(tmp_path, filename)
|
204 |
+
filenames.append(str(filename))
|
205 |
+
|
206 |
+
# Combine audio files
|
207 |
+
final_output = os.path.join(output_dir, "combined_output.wav")
|
208 |
+
self._combine_audio_files(filenames, final_output)
|
209 |
+
|
210 |
+
# Generate conversation text
|
211 |
+
conversation_text = "\n".join(
|
212 |
+
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
|
213 |
+
for i, turn in enumerate(conversation_json["conversation"])
|
214 |
+
)
|
215 |
+
|
216 |
+
return final_output, conversation_text
|
217 |
+
except Exception as e:
|
218 |
+
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
219 |
+
|
220 |
+
async def _generate_audio_edge(self, text: str, voice: str) -> str:
|
221 |
+
"""Generate audio using Edge TTS"""
|
222 |
+
if not text.strip():
|
223 |
+
raise ValueError("Text cannot be empty")
|
224 |
+
|
225 |
+
voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
|
226 |
+
communicate = edge_tts.Communicate(text, voice_short_name)
|
227 |
+
|
228 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
229 |
+
tmp_path = tmp_file.name
|
230 |
+
await communicate.save(tmp_path)
|
231 |
+
|
232 |
+
return tmp_path
|
233 |
+
|
234 |
+
def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
|
235 |
+
"""Convert text to speech using MeloTTS"""
|
236 |
+
if not MELO_AVAILABLE or not self.melo_models:
|
237 |
+
raise RuntimeError("MeloTTS not available")
|
238 |
+
|
239 |
+
speakers = ["EN-Default", "EN-US"]
|
240 |
+
combined_audio = AudioSegment.empty()
|
241 |
+
|
242 |
+
for i, turn in enumerate(conversation_json["conversation"]):
|
243 |
+
bio = io.BytesIO()
|
244 |
+
text = turn["text"]
|
245 |
+
speaker = speakers[i % 2]
|
246 |
+
speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
|
247 |
+
|
248 |
+
# Generate audio
|
249 |
+
self.melo_models["EN"].tts_to_file(
|
250 |
+
text, speaker_id, bio, speed=1.0,
|
251 |
+
pbar=progress.tqdm if progress else None,
|
252 |
+
format="wav"
|
253 |
+
)
|
254 |
+
|
255 |
+
bio.seek(0)
|
256 |
+
audio_segment = AudioSegment.from_file(bio, format="wav")
|
257 |
+
combined_audio += audio_segment
|
258 |
+
|
259 |
+
# Save final audio
|
260 |
+
final_audio_path = "final_podcast.mp3"
|
261 |
+
combined_audio.export(final_audio_path, format="mp3")
|
262 |
+
|
263 |
+
# Generate conversation text
|
264 |
+
conversation_text = "\n".join(
|
265 |
+
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
|
266 |
+
for i, turn in enumerate(conversation_json["conversation"])
|
267 |
+
)
|
268 |
+
|
269 |
+
return final_audio_path, conversation_text
|
270 |
+
|
271 |
+
def _create_output_directory(self) -> str:
|
272 |
+
"""Create a unique output directory"""
|
273 |
+
random_bytes = os.urandom(8)
|
274 |
+
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
|
275 |
+
os.makedirs(folder_name, exist_ok=True)
|
276 |
+
return folder_name
|
277 |
+
|
278 |
+
def _combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
279 |
+
"""Combine multiple audio files into one"""
|
280 |
+
if not filenames:
|
281 |
+
raise ValueError("No input files provided")
|
282 |
+
|
283 |
+
try:
|
284 |
+
audio_segments = []
|
285 |
+
for filename in filenames:
|
286 |
+
audio_segment = AudioSegment.from_file(filename)
|
287 |
+
audio_segments.append(audio_segment)
|
288 |
+
|
289 |
+
combined = sum(audio_segments)
|
290 |
+
combined.export(output_file, format="wav")
|
291 |
+
|
292 |
+
# Clean up temporary files
|
293 |
+
for filename in filenames:
|
294 |
+
os.remove(filename)
|
295 |
+
|
296 |
+
except Exception as e:
|
297 |
+
raise RuntimeError(f"Failed to combine audio files: {e}")
|
298 |
+
|
299 |
+
|
300 |
+
# Global converter instance
|
301 |
+
converter = UnifiedAudioConverter(ConversationConfig())
|
302 |
+
|
303 |
+
|
304 |
+
async def synthesize(article_url: str, mode: str = "API", tts_engine: str = "Edge-TTS"):
|
305 |
+
"""Main synthesis function"""
|
306 |
+
if not article_url:
|
307 |
+
return "Please provide a valid URL.", None
|
308 |
+
|
309 |
+
try:
|
310 |
+
# Fetch text from URL
|
311 |
+
text = converter.fetch_text(article_url)
|
312 |
+
|
313 |
+
# Limit text to max words
|
314 |
+
words = text.split()
|
315 |
+
if len(words) > converter.config.max_words:
|
316 |
+
text = " ".join(words[:converter.config.max_words])
|
317 |
+
|
318 |
+
# Extract conversation based on mode
|
319 |
+
if mode == "API":
|
320 |
+
api_key = os.environ.get("TOGETHER_API_KEY")
|
321 |
+
if not api_key:
|
322 |
+
return "API key not found. Please set TOGETHER_API_KEY environment variable.", None
|
323 |
+
converter.initialize_api_mode(api_key)
|
324 |
+
conversation_json = converter.extract_conversation_api(text)
|
325 |
+
else: # Local mode
|
326 |
+
converter.initialize_local_mode()
|
327 |
+
conversation_json = converter.extract_conversation_local(text)
|
328 |
+
|
329 |
+
# Generate audio based on TTS engine
|
330 |
+
if tts_engine == "Edge-TTS":
|
331 |
+
output_file, conversation_text = await converter.text_to_speech_edge(
|
332 |
+
conversation_json,
|
333 |
+
"en-US-AvaMultilingualNeural",
|
334 |
+
"en-US-AndrewMultilingualNeural"
|
335 |
+
)
|
336 |
+
else: # MeloTTS
|
337 |
+
if not MELO_AVAILABLE:
|
338 |
+
return "MeloTTS not available. Please install required dependencies.", None
|
339 |
+
output_file, conversation_text = converter.text_to_speech_melo(
|
340 |
+
conversation_json
|
341 |
+
)
|
342 |
+
|
343 |
+
return conversation_text, output_file
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
return f"Error: {str(e)}", None
|
347 |
+
|
348 |
+
|
349 |
+
def synthesize_sync(article_url: str, mode: str = "API", tts_engine: str = "Edge-TTS"):
|
350 |
+
"""Synchronous wrapper for async synthesis"""
|
351 |
+
return asyncio.run(synthesize(article_url, mode, tts_engine))
|
352 |
+
|
353 |
+
|
354 |
+
# Gradio Interface
|
355 |
+
with gr.Blocks(theme='soft', title="URL to Podcast Converter") as demo:
|
356 |
+
gr.Markdown("# 🎙️ URL to Podcast Converter")
|
357 |
+
gr.Markdown("Convert any article, blog, or news into an engaging podcast conversation!")
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
with gr.Column(scale=3):
|
361 |
+
url_input = gr.Textbox(
|
362 |
+
label="Article URL",
|
363 |
+
placeholder="Enter the article URL here...",
|
364 |
+
value=""
|
365 |
+
)
|
366 |
+
with gr.Column(scale=1):
|
367 |
+
mode_selector = gr.Radio(
|
368 |
+
choices=["API", "Local"],
|
369 |
+
value="API",
|
370 |
+
label="Processing Mode",
|
371 |
+
info="API: Faster, requires API key | Local: Slower, runs on device"
|
372 |
+
)
|
373 |
+
tts_selector = gr.Radio(
|
374 |
+
choices=["Edge-TTS", "MeloTTS"],
|
375 |
+
value="Edge-TTS",
|
376 |
+
label="TTS Engine",
|
377 |
+
info="Edge-TTS: More natural | MeloTTS: Requires GPU"
|
378 |
+
)
|
379 |
+
|
380 |
+
convert_btn = gr.Button("🎯 Convert to Podcast", variant="primary", size="lg")
|
381 |
+
|
382 |
+
with gr.Row():
|
383 |
+
with gr.Column():
|
384 |
+
conversation_output = gr.Textbox(
|
385 |
+
label="Generated Conversation",
|
386 |
+
lines=15,
|
387 |
+
max_lines=30,
|
388 |
+
interactive=False
|
389 |
+
)
|
390 |
+
with gr.Column():
|
391 |
+
audio_output = gr.Audio(
|
392 |
+
label="Podcast Audio",
|
393 |
+
type="filepath",
|
394 |
+
interactive=False
|
395 |
+
)
|
396 |
+
|
397 |
+
gr.Examples(
|
398 |
+
examples=[
|
399 |
+
["https://huggingface.co/blog/openfree/cycle-navigator", "API", "Edge-TTS"],
|
400 |
+
["https://www.bbc.com/news/technology-67988517", "API", "Edge-TTS"],
|
401 |
+
],
|
402 |
+
inputs=[url_input, mode_selector, tts_selector],
|
403 |
+
outputs=[conversation_output, audio_output],
|
404 |
+
fn=synthesize_sync,
|
405 |
+
cache_examples=False,
|
406 |
+
)
|
407 |
+
|
408 |
+
convert_btn.click(
|
409 |
+
fn=synthesize_sync,
|
410 |
+
inputs=[url_input, mode_selector, tts_selector],
|
411 |
+
outputs=[conversation_output, audio_output]
|
412 |
+
)
|
413 |
+
|
414 |
+
|
415 |
+
|
416 |
+
# Launch the app
|
417 |
+
if __name__ == "__main__":
|
418 |
+
demo.queue(api_open=True, default_concurrency_limit=10).launch(
|
419 |
+
show_api=True,
|
420 |
+
share=False,
|
421 |
+
server_name="0.0.0.0",
|
422 |
+
server_port=7860
|
423 |
+
)
|
424 |
|