Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,286 Bytes
49e7687 dd4641e 49e7687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
import gradio as gr
import os
import asyncio
import torch
import io
import json
import re
import httpx
import tempfile
import wave
import base64
import numpy as np
import soundfile as sf
import subprocess
import shutil
from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional
from pathlib import Path
from threading import Thread
from dotenv import load_dotenv
# Edge TTS imports
import edge_tts
from pydub import AudioSegment
# OpenAI imports
from openai import OpenAI
# Transformers imports (for local mode)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
# Spark TTS imports
try:
from huggingface_hub import snapshot_download
SPARK_AVAILABLE = True
except:
SPARK_AVAILABLE = False
# MeloTTS imports (for local mode)
try:
os.system("python -m unidic download")
from melo.api import TTS as MeloTTS
MELO_AVAILABLE = True
except:
MELO_AVAILABLE = False
load_dotenv()
@dataclass
class ConversationConfig:
max_words: int = 6000
prefix_url: str = "https://r.jina.ai/"
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
local_model_name: str = "NousResearch/Hermes-2-Pro-Llama-3-8B"
class UnifiedAudioConverter:
def __init__(self, config: ConversationConfig):
self.config = config
self.llm_client = None
self.local_model = None
self.tokenizer = None
self.melo_models = None
self.spark_model_dir = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def initialize_api_mode(self, api_key: str):
"""Initialize API mode with Together API"""
self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
def initialize_local_mode(self):
"""Initialize local mode with Hugging Face model"""
if self.local_model is None:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
self.local_model = AutoModelForCausalLM.from_pretrained(
self.config.local_model_name,
quantization_config=quantization_config
)
self.tokenizer = AutoTokenizer.from_pretrained(
self.config.local_model_name,
revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
)
def initialize_spark_tts(self):
"""Initialize Spark TTS model by downloading if needed"""
if not SPARK_AVAILABLE:
raise RuntimeError("Spark TTS dependencies not available")
model_dir = "pretrained_models/Spark-TTS-0.5B"
# Check if model exists, if not download it
if not os.path.exists(model_dir):
print("Downloading Spark-TTS model...")
try:
os.makedirs("pretrained_models", exist_ok=True)
snapshot_download(
"SparkAudio/Spark-TTS-0.5B",
local_dir=model_dir
)
print("Spark-TTS model downloaded successfully")
except Exception as e:
raise RuntimeError(f"Failed to download Spark-TTS model: {e}")
self.spark_model_dir = model_dir
# Check if we have the CLI inference script
if not os.path.exists("cli/inference.py"):
print("Warning: Spark-TTS CLI not found. Please clone the Spark-TTS repository.")
def initialize_melo_tts(self):
"""Initialize MeloTTS models"""
if MELO_AVAILABLE and self.melo_models is None:
self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}
def fetch_text(self, url: str) -> str:
"""Fetch text content from URL"""
if not url:
raise ValueError("URL cannot be empty")
if not url.startswith("http://") and not url.startswith("https://"):
raise ValueError("URL must start with 'http://' or 'https://'")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def _build_prompt(self, text: str, language: str = "English") -> str:
"""Build prompt for conversation generation"""
if language == "Korean":
template = """
{
"conversation": [
{"speaker": "", "text": ""},
{"speaker": "", "text": ""}
]
}
"""
return (
f"{text}\n\n์ ๊ณต๋ ํ
์คํธ๋ฅผ ๋ ๋ช
์ ์ ๋ฌธ๊ฐ ๊ฐ์ ์งง๊ณ ์ ์ตํ๋ฉฐ ๋ช
ํํ "
f"ํ์บ์คํธ ๋ํ๋ก ๋ณํํด์ฃผ์ธ์. ํค์ ์ ๋ฌธ์ ์ด๊ณ ๋งค๋ ฅ์ ์ด์ด์ผ ํฉ๋๋ค. "
f"๋ค์ ํ์์ ์ค์ํ๊ณ JSON๋ง ๋ฐํํด์ฃผ์ธ์:\n{template}"
)
else:
template = """
{
"conversation": [
{"speaker": "", "text": ""},
{"speaker": "", "text": ""}
]
}
"""
return (
f"{text}\n\nConvert the provided text into a short, informative and crisp "
f"podcast conversation between two experts. The tone should be "
f"professional and engaging. Please adhere to the following "
f"format and return ONLY the JSON:\n{template}"
)
def extract_conversation_api(self, text: str, language: str = "English") -> Dict:
"""Extract conversation using API"""
if not self.llm_client:
raise RuntimeError("API mode not initialized")
try:
# ์ธ์ด๋ณ ํ๋กฌํํธ ๊ตฌ์ฑ
if language == "Korean":
system_message = "๋น์ ์ ํ๊ตญ์ด๋ก ํ์บ์คํธ ๋ํ๋ฅผ ์์ฑํ๋ ์ ๋ฌธ๊ฐ์
๋๋ค. ์์ฐ์ค๋ฝ๊ณ ์ ์ตํ ํ๊ตญ์ด ๋ํ๋ฅผ ๋ง๋ค์ด์ฃผ์ธ์."
else:
system_message = "You are an expert at creating podcast conversations in English. Create natural and informative English conversations."
chat_completion = self.llm_client.chat.completions.create(
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": self._build_prompt(text, language)}
],
model=self.config.model_name,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
return json.loads(json_match.group())
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {e}")
def extract_conversation_local(self, text: str, language: str = "English", progress=None) -> Dict:
"""Extract conversation using local model"""
if not self.local_model or not self.tokenizer:
raise RuntimeError("Local mode not initialized")
# ์ธ์ด๋ณ ์์คํ
๋ฉ์์ง
if language == "Korean":
system_message = "๋น์ ์ ํ๊ตญ์ด๋ก ํ์บ์คํธ ๋ํ๋ฅผ ์์ฑํ๋ ์ ๋ฌธ๊ฐ์
๋๋ค. ์์ฐ์ค๋ฝ๊ณ ์ ์ตํ ํ๊ตญ์ด ๋ํ๋ฅผ ๋ง๋ค์ด์ฃผ์ธ์."
else:
system_message = "You are an expert at creating podcast conversations in English. Create natural and informative English conversations."
chat = [
{"role": "system", "content": system_message},
{"role": "user", "content": self._build_prompt(text, language)}
]
terminators = [
self.tokenizer.eos_token_id,
self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
messages = self.tokenizer.apply_chat_template(
chat, tokenize=False, add_generation_prompt=True
)
model_inputs = self.tokenizer([messages], return_tensors="pt").to(self.device)
streamer = TextIteratorStreamer(
self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=4000,
do_sample=True,
temperature=0.9,
eos_token_id=terminators,
)
t = Thread(target=self.local_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, partial_text)
if json_match:
return json.loads(json_match.group())
else:
# Return a default template based on language
if language == "Korean":
return {
"conversation": [
{"speaker": "์งํ์", "text": "์๋
ํ์ธ์, ํ์บ์คํธ์ ์ค์ ๊ฒ์ ํ์ํฉ๋๋ค."},
{"speaker": "๊ฒ์คํธ", "text": "์๋
ํ์ธ์, ์ด๋ํด ์ฃผ์
์ ๊ฐ์ฌํฉ๋๋ค."}
]
}
else:
return {
"conversation": [
{"speaker": "Host", "text": "Welcome to our podcast."},
{"speaker": "Guest", "text": "Thank you for having me."}
]
}
def parse_conversation_text(self, conversation_text: str) -> Dict:
"""Parse conversation text back to JSON format"""
lines = conversation_text.strip().split('\n')
conversation_data = {"conversation": []}
for line in lines:
if ':' in line:
speaker, text = line.split(':', 1)
conversation_data["conversation"].append({
"speaker": speaker.strip(),
"text": text.strip()
})
return conversation_data
async def text_to_speech_edge(self, conversation_json: Dict, language: str = "English") -> Tuple[str, str]:
"""Convert text to speech using Edge TTS"""
output_dir = Path(self._create_output_directory())
filenames = []
try:
# ์ธ์ด๋ณ ์์ฑ ์ค์
if language == "Korean":
voices = [
"ko-KR-SunHiMultilingualNeural", # ์ฌ์ฑ ์์ฑ (์์ฐ์ค๋ฌ์ด ํ๊ตญ์ด)
"ko-KR-HyunsuMultilingualNeural" # ๋จ์ฑ ์์ฑ (์์ฐ์ค๋ฌ์ด ํ๊ตญ์ด)
]
else:
voices = [
"en-US-AvaMultilingualNeural", # ์ฌ์ฑ ์์ฑ
"en-US-AndrewMultilingualNeural" # ๋จ์ฑ ์์ฑ
]
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.wav"
voice = voices[i % len(voices)]
tmp_path = await self._generate_audio_edge(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
# Combine audio files
final_output = os.path.join(output_dir, "combined_output.wav")
self._combine_audio_files(filenames, final_output)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio_edge(self, text: str, voice: str) -> str:
"""Generate audio using Edge TTS"""
if not text.strip():
raise ValueError("Text cannot be empty")
voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
communicate = edge_tts.Communicate(text, voice_short_name)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
def text_to_speech_spark(self, conversation_json: Dict, language: str = "English", progress=None) -> Tuple[str, str]:
"""Convert text to speech using Spark TTS CLI"""
if not SPARK_AVAILABLE or not self.spark_model_dir:
raise RuntimeError("Spark TTS not available")
try:
output_dir = self._create_output_directory()
audio_files = []
# Create different voice characteristics for different speakers
if language == "Korean":
voice_configs = [
{"prompt_text": "์๋
ํ์ธ์, ์ค๋ ํ์บ์คํธ ์งํ์ ๋งก์ ์งํ์์
๋๋ค.", "gender": "female"},
{"prompt_text": "์๋
ํ์ธ์, ์ค๋ ๊ฒ์คํธ๋ก ์ฐธ์ฌํ๊ฒ ๋์ด ๊ธฐ์ฉ๋๋ค.", "gender": "male"}
]
else:
voice_configs = [
{"prompt_text": "Hello, welcome to our podcast. I'm your host today.", "gender": "female"},
{"prompt_text": "Thank you for having me. I'm excited to be here.", "gender": "male"}
]
for i, turn in enumerate(conversation_json["conversation"]):
text = turn["text"]
if not text.strip():
continue
# Use different voice config for each speaker
voice_config = voice_configs[i % len(voice_configs)]
output_file = os.path.join(output_dir, f"spark_output_{i}.wav")
# Run Spark TTS CLI inference
cmd = [
"python", "-m", "cli.inference",
"--text", text,
"--device", "0" if torch.cuda.is_available() else "cpu",
"--save_dir", output_dir,
"--model_dir", self.spark_model_dir,
"--prompt_text", voice_config["prompt_text"],
"--output_name", f"spark_output_{i}.wav"
]
try:
# Run the command
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=60,
cwd="." # Make sure we're in the right directory
)
if result.returncode == 0:
audio_files.append(output_file)
else:
print(f"Spark TTS error for turn {i}: {result.stderr}")
# Create a short silence as fallback
silence = np.zeros(int(22050 * 1.0)) # 1 second of silence
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except subprocess.TimeoutExpired:
print(f"Spark TTS timeout for turn {i}")
# Create silence as fallback
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except Exception as e:
print(f"Error running Spark TTS for turn {i}: {e}")
# Create silence as fallback
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
# Combine all audio files
if audio_files:
final_output = os.path.join(output_dir, "spark_combined.wav")
self._combine_audio_files(audio_files, final_output)
else:
raise RuntimeError("No audio files generated")
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech with Spark TTS: {e}")
def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
"""Convert text to speech using MeloTTS"""
if not MELO_AVAILABLE or not self.melo_models:
raise RuntimeError("MeloTTS not available")
speakers = ["EN-Default", "EN-US"]
combined_audio = AudioSegment.empty()
for i, turn in enumerate(conversation_json["conversation"]):
bio = io.BytesIO()
text = turn["text"]
speaker = speakers[i % 2]
speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
# Generate audio
self.melo_models["EN"].tts_to_file(
text, speaker_id, bio, speed=1.0,
pbar=progress.tqdm if progress else None,
format="wav"
)
bio.seek(0)
audio_segment = AudioSegment.from_file(bio, format="wav")
combined_audio += audio_segment
# Save final audio
final_audio_path = "melo_podcast.mp3"
combined_audio.export(final_audio_path, format="mp3")
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_audio_path, conversation_text
def _create_output_directory(self) -> str:
"""Create a unique output directory"""
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def _combine_audio_files(self, filenames: List[str], output_file: str) -> None:
"""Combine multiple audio files into one"""
if not filenames:
raise ValueError("No input files provided")
try:
audio_segments = []
for filename in filenames:
if os.path.exists(filename):
audio_segment = AudioSegment.from_file(filename)
audio_segments.append(audio_segment)
if audio_segments:
combined = sum(audio_segments)
combined.export(output_file, format="wav")
# Clean up temporary files
for filename in filenames:
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
# Global converter instance
converter = UnifiedAudioConverter(ConversationConfig())
async def synthesize(article_url: str, mode: str = "API", tts_engine: str = "Edge-TTS", language: str = "English"):
"""Main synthesis function"""
if not article_url:
return "Please provide a valid URL.", None
try:
# Fetch text from URL
text = converter.fetch_text(article_url)
# Limit text to max words
words = text.split()
if len(words) > converter.config.max_words:
text = " ".join(words[:converter.config.max_words])
# Extract conversation based on mode
if mode == "API":
api_key = os.environ.get("TOGETHER_API_KEY")
if not api_key:
return "API key not found. Please set TOGETHER_API_KEY environment variable.", None
converter.initialize_api_mode(api_key)
conversation_json = converter.extract_conversation_api(text, language)
else: # Local mode
converter.initialize_local_mode()
conversation_json = converter.extract_conversation_local(text, language)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return conversation_text, None
except Exception as e:
return f"Error: {str(e)}", None
async def regenerate_audio(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
"""Regenerate audio from edited conversation text"""
if not conversation_text.strip():
return "Please provide conversation text.", None
try:
# Parse the conversation text back to JSON format
conversation_json = converter.parse_conversation_text(conversation_text)
if not conversation_json["conversation"]:
return "No valid conversation found in the text.", None
# ํ๊ตญ์ด์ธ ๊ฒฝ์ฐ Edge-TTS๋ง ์ฌ์ฉ (๋ค๋ฅธ TTS๋ ํ๊ตญ์ด ์ง์์ด ์ ํ์ )
if language == "Korean" and tts_engine != "Edge-TTS":
return "ํ๊ตญ์ด๋ Edge-TTS๋ง ์ง์๋ฉ๋๋ค. TTS ์์ง์ด ์๋์ผ๋ก Edge-TTS๋ก ๋ณ๊ฒฝ๋ฉ๋๋ค.", None
# Generate audio based on TTS engine
if tts_engine == "Edge-TTS":
output_file, _ = await converter.text_to_speech_edge(conversation_json, language)
elif tts_engine == "Spark-TTS":
if not SPARK_AVAILABLE:
return "Spark TTS not available. Please install required dependencies and clone the Spark-TTS repository.", None
converter.initialize_spark_tts()
output_file, _ = converter.text_to_speech_spark(conversation_json, language)
else: # MeloTTS
if not MELO_AVAILABLE:
return "MeloTTS not available. Please install required dependencies.", None
if language == "Korean":
return "MeloTTS does not support Korean. Please use Edge-TTS for Korean.", None
converter.initialize_melo_tts()
output_file, _ = converter.text_to_speech_melo(conversation_json)
return "Audio generated successfully!", output_file
except Exception as e:
return f"Error generating audio: {str(e)}", None
def synthesize_sync(article_url: str, mode: str = "API", tts_engine: str = "Edge-TTS", language: str = "English"):
"""Synchronous wrapper for async synthesis"""
return asyncio.run(synthesize(article_url, mode, tts_engine, language))
def regenerate_audio_sync(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
"""Synchronous wrapper for async audio regeneration"""
return asyncio.run(regenerate_audio(conversation_text, tts_engine, language))
def update_tts_engine_for_korean(language):
"""ํ๊ตญ์ด ์ ํ ์ TTS ์์ง ์ต์
์
๋ฐ์ดํธ"""
if language == "Korean":
return gr.Radio(
choices=["Edge-TTS"],
value="Edge-TTS",
label="TTS Engine",
info="ํ๊ตญ์ด๋ Edge-TTS๋ง ์ง์๋ฉ๋๋ค",
interactive=False
)
else:
return gr.Radio(
choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
value="Edge-TTS",
label="TTS Engine",
info="Edge-TTS: Cloud-based, natural voices | Spark-TTS: Local AI model | MeloTTS: Local, requires GPU",
interactive=True
)
# Gradio Interface
with gr.Blocks(theme='soft', title="URL to Podcast Converter") as demo:
gr.Markdown("# ๐๏ธ URL to Podcast Converter")
gr.Markdown("Convert any article, blog, or news into an engaging podcast conversation!")
with gr.Row():
with gr.Column(scale=3):
url_input = gr.Textbox(
label="Article URL",
placeholder="Enter the article URL here...",
value=""
)
with gr.Column(scale=1):
# ์ธ์ด ์ ํ ์ถ๊ฐ
language_selector = gr.Radio(
choices=["English", "Korean"],
value="English",
label="Language / ์ธ์ด",
info="Select output language / ์ถ๋ ฅ ์ธ์ด๋ฅผ ์ ํํ์ธ์"
)
mode_selector = gr.Radio(
choices=["API", "Local"],
value="API",
label="Processing Mode",
info="API: Faster, requires API key | Local: Slower, runs on device"
)
# TTS ์์ง ์ ํ
with gr.Group():
gr.Markdown("### TTS Engine Selection")
tts_selector = gr.Radio(
choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
value="Edge-TTS",
label="TTS Engine",
info="Edge-TTS: Cloud-based, natural voices | Spark-TTS: Local AI model | MeloTTS: Local, requires GPU"
)
gr.Markdown("""
**Recommended:**
- ๐ **Edge-TTS**: Best quality, cloud-based, instant setup
- ๐ค **Spark-TTS**: Local AI model (0.5B), zero-shot voice cloning
**Additional Option:**
- โก **MeloTTS**: Local processing, GPU recommended
**ํ๊ตญ์ด ์ง์:**
- ๐ฐ๐ท ํ๊ตญ์ด ์ ํ ์ Edge-TTS๋ง ์ฌ์ฉ ๊ฐ๋ฅํฉ๋๋ค
""")
convert_btn = gr.Button("๐ฏ Generate Conversation / ๋ํ ์์ฑ", variant="primary", size="lg")
with gr.Row():
with gr.Column():
conversation_output = gr.Textbox(
label="Generated Conversation (Editable) / ์์ฑ๋ ๋ํ (ํธ์ง ๊ฐ๋ฅ)",
lines=15,
max_lines=30,
interactive=True,
placeholder="Generated conversation will appear here. You can edit it before generating audio.\n์์ฑ๋ ๋ํ๊ฐ ์ฌ๊ธฐ์ ํ์๋ฉ๋๋ค. ์ค๋์ค ์์ฑ ์ ์ ํธ์งํ ์ ์์ต๋๋ค.",
info="Edit the conversation as needed. Format: 'Speaker Name: Text' / ํ์์ ๋ฐ๋ผ ๋ํ๋ฅผ ํธ์งํ์ธ์. ํ์: 'ํ์ ์ด๋ฆ: ํ
์คํธ'"
)
# ์ค๋์ค ์์ฑ ๋ฒํผ ์ถ๊ฐ
with gr.Row():
generate_audio_btn = gr.Button("๐๏ธ Generate Audio from Text / ํ
์คํธ์์ ์ค๋์ค ์์ฑ", variant="secondary", size="lg")
gr.Markdown("*Edit the conversation above, then click to generate audio / ์์ ๋ํ๋ฅผ ํธ์งํ ํ ํด๋ฆญํ์ฌ ์ค๋์ค๋ฅผ ์์ฑํ์ธ์*")
with gr.Column():
audio_output = gr.Audio(
label="Podcast Audio / ํ์บ์คํธ ์ค๋์ค",
type="filepath",
interactive=False
)
# ์ํ ๋ฉ์์ง ์ถ๊ฐ
status_output = gr.Textbox(
label="Status / ์ํ",
interactive=False,
visible=True
)
# TTS ์์ง๋ณ ์ค๋ช
๋ฐ ์ค์น ์๋ด ์ถ๊ฐ
with gr.Row():
gr.Markdown("""
### TTS Engine Details / TTS ์์ง ์์ธ์ ๋ณด:
- **Edge-TTS**: Microsoft's cloud TTS service with high-quality natural voices. Requires internet connection.
- ๐ฐ๐ท **ํ๊ตญ์ด ์ง์**: ์์ฐ์ค๋ฌ์ด ํ๊ตญ์ด ์์ฑ (์ฌ์ฑ: SunHi, ๋จ์ฑ: InJoon)
- **Spark-TTS**: SparkAudio's local AI model (0.5B parameters) with zero-shot voice cloning capability.
- **Setup required**: Clone [Spark-TTS repository](https://github.com/SparkAudio/Spark-TTS) in current directory
- Features: Bilingual support (Chinese/English), controllable speech generation
- License: CC BY-NC-SA (Non-commercial use only)
- โ ๏ธ **ํ๊ตญ์ด ๋ฏธ์ง์**
- **MeloTTS**: Local TTS with multiple voice options. GPU recommended for better performance.
- โ ๏ธ **ํ๊ตญ์ด ๋ฏธ์ง์**
### Spark-TTS Setup Instructions:
```bash
git clone https://github.com/SparkAudio/Spark-TTS.git
cd Spark-TTS
pip install -r requirements.txt
```
""")
gr.Examples(
examples=[
["https://huggingface.co/blog/openfree/cycle-navigator", "API", "Edge-TTS", "English"],
["https://www.bbc.com/news/technology-67988517", "API", "Spark-TTS", "English"],
["https://arxiv.org/abs/2301.00810", "API", "Edge-TTS", "Korean"],
],
inputs=[url_input, mode_selector, tts_selector, language_selector],
outputs=[conversation_output, status_output],
fn=synthesize_sync,
cache_examples=False,
)
# ์ธ์ด ๋ณ๊ฒฝ ์ TTS ์์ง ์ต์
์
๋ฐ์ดํธ
language_selector.change(
fn=update_tts_engine_for_korean,
inputs=[language_selector],
outputs=[tts_selector]
)
# ์ด๋ฒคํธ ์ฐ๊ฒฐ
convert_btn.click(
fn=synthesize_sync,
inputs=[url_input, mode_selector, tts_selector, language_selector],
outputs=[conversation_output, status_output]
)
generate_audio_btn.click(
fn=regenerate_audio_sync,
inputs=[conversation_output, tts_selector, language_selector],
outputs=[status_output, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue(api_open=True, default_concurrency_limit=10).launch(
show_api=True,
share=False,
server_name="0.0.0.0",
server_port=7860
) |