File size: 87,202 Bytes
266ca46
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e038f5e
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e038f5e
 
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e7687
266ca46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f45e8
 
 
 
 
 
 
 
00efe1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
import spaces
import gradio as gr
import os
import asyncio
import torch
import io
import json
import re
import httpx
import tempfile
import wave
import base64
import numpy as np
import soundfile as sf
import subprocess
import shutil
import requests
import logging
from datetime import datetime, timedelta
from typing import List, Tuple, Dict, Optional
from pathlib import Path
from threading import Thread
from dotenv import load_dotenv

# PDF processing imports
from langchain_community.document_loaders import PyPDFLoader

# Edge TTS imports
import edge_tts
from pydub import AudioSegment

# OpenAI imports
from openai import OpenAI

# Transformers imports (for legacy local mode)
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    BitsAndBytesConfig,
)

# Llama CPP imports (for new local mode)
try:
    from llama_cpp import Llama
    from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
    from llama_cpp_agent.providers import LlamaCppPythonProvider
    from llama_cpp_agent.chat_history import BasicChatHistory
    from llama_cpp_agent.chat_history.messages import Roles
    from huggingface_hub import hf_hub_download
    LLAMA_CPP_AVAILABLE = True
except ImportError:
    LLAMA_CPP_AVAILABLE = False

# Spark TTS imports
try:
    from huggingface_hub import snapshot_download
    SPARK_AVAILABLE = True
except:
    SPARK_AVAILABLE = False

# MeloTTS imports (for local mode)
try:
    # unidic 다운로드를 조건부로 처리
    if not os.path.exists("/usr/local/lib/python3.10/site-packages/unidic"):
        try:
            os.system("python -m unidic download")
        except:
            pass
    from melo.api import TTS as MeloTTS
    MELO_AVAILABLE = True
except:
    MELO_AVAILABLE = False

# Import config and prompts
from config_prompts import (
    ConversationConfig, 
    PromptBuilder, 
    DefaultConversations,
    EDGE_TTS_ONLY_LANGUAGES,
    EDGE_TTS_VOICES
)

load_dotenv()

# Brave Search API 설정
BRAVE_KEY = os.getenv("BSEARCH_API")
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"


def brave_search(query: str, count: int = 8, freshness_days: int | None = None):
    """Brave Search API를 사용하여 최신 정보 검색"""
    if not BRAVE_KEY:
        return []
    params = {"q": query, "count": str(count)}
    if freshness_days:
        dt_from = (datetime.utcnow() - timedelta(days=freshness_days)).strftime("%Y-%m-%d")
        params["freshness"] = dt_from
    try:
        r = requests.get(
            BRAVE_ENDPOINT,
            headers={"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY},
            params=params,
            timeout=15
        )
        raw = r.json().get("web", {}).get("results") or []
        return [{
            "title": r.get("title", ""),
            "url": r.get("url", r.get("link", "")),
            "snippet": r.get("description", r.get("text", "")),
            "host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0]
        } for r in raw[:count]]
    except Exception as e:
        logging.error(f"Brave search error: {e}")
        return []


def format_search_results(query: str, for_keyword: bool = False) -> str:
    """검색 결과를 포맷팅하여 반환"""
    # 키워드 검색의 경우 더 많은 결과 사용
    count = 5 if for_keyword else 3
    rows = brave_search(query, count, freshness_days=7 if not for_keyword else None)
    if not rows:
        return ""
    
    results = []
    # 키워드 검색의 경우 더 상세한 정보 포함
    max_results = 4 if for_keyword else 2
    for r in rows[:max_results]:
        if for_keyword:
            # 키워드 검색은 더 긴 스니펫 사용
            snippet = r['snippet'][:200] + "..." if len(r['snippet']) > 200 else r['snippet']
            results.append(f"**{r['title']}**\n{snippet}\nSource: {r['host']}")
        else:
            # 일반 검색은 짧은 스니펫
            snippet = r['snippet'][:100] + "..." if len(r['snippet']) > 100 else r['snippet']
            results.append(f"- {r['title']}: {snippet}")
    
    return "\n\n".join(results) + "\n"


def extract_keywords_for_search(text: str, language: str = "English") -> List[str]:
    """텍스트에서 검색할 키워드 추출 (개선)"""
    # 텍스트 앞부분만 사용 (너무 많은 텍스트 처리 방지)
    text_sample = text[:500]  
    
    if language == "Korean":
        import re
        # 한국어 명사 추출 (2글자 이상)
        keywords = re.findall(r'[가-힣]{2,}', text_sample)
        # 중복 제거하고 가장 긴 단어 1개만 선택
        unique_keywords = list(dict.fromkeys(keywords))
        # 길이 순으로 정렬하고 가장 의미있을 것 같은 단어 선택
        unique_keywords.sort(key=len, reverse=True)
        return unique_keywords[:1]  # 1개만 반환
    else:
        # 영어는 대문자로 시작하는 단어 중 가장 긴 것 1개
        words = text_sample.split()
        keywords = [word.strip('.,!?;:') for word in words 
                   if len(word) > 4 and word[0].isupper()]
        if keywords:
            return [max(keywords, key=len)]  # 가장 긴 단어 1개
        return []


def search_and_compile_content(keyword: str, language: str = "English") -> str:
    """키워드로 검색하여 충분한 콘텐츠 컴파일"""
    if not BRAVE_KEY:
        # API 없을 때도 기본 콘텐츠 생성
        if language == "Korean":
            return f"""
'{keyword}'에 대한 종합적인 정보:

{keyword}는 현대 사회에서 매우 중요한 주제입니다. 
이 주제는 다양한 측면에서 우리의 삶에 영향을 미치고 있으며, 
최근 들어 더욱 주목받고 있습니다.

주요 특징:
1. 기술적 발전과 혁신
2. 사회적 영향과 변화
3. 미래 전망과 가능성
4. 실용적 활용 방안
5. 글로벌 트렌드와 동향

전문가들은 {keyword}가 앞으로 더욱 중요해질 것으로 예상하고 있으며,
이에 대한 깊이 있는 이해가 필요한 시점입니다.
"""
        else:
            return f"""
Comprehensive information about '{keyword}':

{keyword} is a significant topic in modern society.
This subject impacts our lives in various ways and has been 
gaining increasing attention recently.

Key aspects:
1. Technological advancement and innovation
2. Social impact and changes
3. Future prospects and possibilities
4. Practical applications
5. Global trends and developments

Experts predict that {keyword} will become even more important,
and it's crucial to develop a deep understanding of this topic.
"""
    
    # 언어에 따른 다양한 검색 쿼리
    if language == "Korean":
        queries = [
            f"{keyword} 최신 뉴스 2024",
            f"{keyword} 정보 설명",
            f"{keyword} 트렌드 전망",
            f"{keyword} 장점 단점",
            f"{keyword} 활용 방법",
            f"{keyword} 전문가 의견"
        ]
    else:
        queries = [
            f"{keyword} latest news 2024",
            f"{keyword} explained comprehensive",
            f"{keyword} trends forecast",
            f"{keyword} advantages disadvantages",
            f"{keyword} how to use",
            f"{keyword} expert opinions"
        ]
    
    all_content = []
    total_content_length = 0
    
    for query in queries:
        results = brave_search(query, count=5)  # 더 많은 결과 가져오기
        for r in results[:3]:  # 각 쿼리당 상위 3개
            content = f"**{r['title']}**\n{r['snippet']}\nSource: {r['host']}\n"
            all_content.append(content)
            total_content_length += len(r['snippet'])
    
    # 콘텐츠가 부족하면 추가 생성
    if total_content_length < 1000:  # 최소 1000자 확보
        if language == "Korean":
            additional_content = f"""
추가 정보:
{keyword}와 관련된 최근 동향을 살펴보면, 이 분야는 빠르게 발전하고 있습니다.
많은 전문가들이 이 주제에 대해 활발히 연구하고 있으며, 
실생활에서의 응용 가능성도 계속 확대되고 있습니다.

특히 주목할 점은:
- 기술 혁신의 가속화
- 사용자 경험의 개선
- 접근성의 향상
- 비용 효율성 증대
- 글로벌 시장의 성장

이러한 요소들이 {keyword}의 미래를 더욱 밝게 만들고 있습니다.
"""
        else:
            additional_content = f"""
Additional insights:
Recent developments in {keyword} show rapid advancement in this field.
Many experts are actively researching this topic, and its practical 
applications continue to expand.

Key points to note:
- Accelerating technological innovation
- Improving user experience
- Enhanced accessibility
- Increased cost efficiency
- Growing global market

These factors are making the future of {keyword} increasingly promising.
"""
        all_content.append(additional_content)
    
    # 컴파일된 콘텐츠 반환
    compiled = "\n\n".join(all_content)
    
    # 키워드 기반 소개
    if language == "Korean":
        intro = f"### '{keyword}'에 대한 종합적인 정보와 최신 동향:\n\n"
    else:
        intro = f"### Comprehensive information and latest trends about '{keyword}':\n\n"
    
    return intro + compiled


class UnifiedAudioConverter:
    def __init__(self, config: ConversationConfig):
        self.config = config
        self.llm_client = None
        self.legacy_local_model = None
        self.legacy_tokenizer = None
        # 새로운 로컬 LLM 관련
        self.local_llm = None
        self.local_llm_model = None
        self.melo_models = None
        self.spark_model_dir = None
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # 프롬프트 빌더 추가
        self.prompt_builder = PromptBuilder()
        
    def initialize_api_mode(self, api_key: str):
        """Initialize API mode with Together API"""
        self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
        
    @spaces.GPU(duration=120)
    def initialize_local_mode(self):
        """Initialize new local mode with Llama CPP"""
        if not LLAMA_CPP_AVAILABLE:
            raise RuntimeError("Llama CPP dependencies not available. Please install llama-cpp-python and llama-cpp-agent.")
        
        if self.local_llm is None or self.local_llm_model != self.config.local_model_name:
            try:
                # 모델 다운로드
                model_path = hf_hub_download(
                    repo_id=self.config.local_model_repo,
                    filename=self.config.local_model_name,
                    local_dir="./models"
                )
                
                model_path_local = os.path.join("./models", self.config.local_model_name)
                
                if not os.path.exists(model_path_local):
                    raise RuntimeError(f"Model file not found at {model_path_local}")
                
                # Llama 모델 초기화
                self.local_llm = Llama(
                    model_path=model_path_local,
                    flash_attn=True,
                    n_gpu_layers=81 if torch.cuda.is_available() else 0,
                    n_batch=1024,
                    n_ctx=16384,
                )
                self.local_llm_model = self.config.local_model_name
                print(f"Local LLM initialized: {model_path_local}")
                
            except Exception as e:
                print(f"Failed to initialize local LLM: {e}")
                raise RuntimeError(f"Failed to initialize local LLM: {e}")

    @spaces.GPU(duration=60)
    def initialize_legacy_local_mode(self):
        """Initialize legacy local mode with Hugging Face model (fallback)"""
        if self.legacy_local_model is None:
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True, 
                bnb_4bit_compute_dtype=torch.float16
            )
            self.legacy_local_model = AutoModelForCausalLM.from_pretrained(
                self.config.legacy_local_model_name, 
                quantization_config=quantization_config
            )
            self.legacy_tokenizer = AutoTokenizer.from_pretrained(
                self.config.legacy_local_model_name,
                revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
            )

    def initialize_spark_tts(self):
        """Initialize Spark TTS model by downloading if needed"""
        if not SPARK_AVAILABLE:
            raise RuntimeError("Spark TTS dependencies not available")
        
        model_dir = "pretrained_models/Spark-TTS-0.5B"
        
        # Check if model exists, if not download it
        if not os.path.exists(model_dir):
            print("Downloading Spark-TTS model...")
            try:
                os.makedirs("pretrained_models", exist_ok=True)
                snapshot_download(
                    "SparkAudio/Spark-TTS-0.5B", 
                    local_dir=model_dir
                )
                print("Spark-TTS model downloaded successfully")
            except Exception as e:
                raise RuntimeError(f"Failed to download Spark-TTS model: {e}")
        
        self.spark_model_dir = model_dir
        
        # Check if we have the CLI inference script
        if not os.path.exists("cli/inference.py"):
            print("Warning: Spark-TTS CLI not found. Please clone the Spark-TTS repository.")

    @spaces.GPU(duration=60)
    def initialize_melo_tts(self):
        """Initialize MeloTTS models"""        
        if MELO_AVAILABLE and self.melo_models is None:
            self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}

    def fetch_text(self, url: str) -> str:
        """Fetch text content from URL"""
        if not url:
            raise ValueError("URL cannot be empty")
            
        if not url.startswith("http://") and not url.startswith("https://"):
            raise ValueError("URL must start with 'http://' or 'https://'")

        full_url = f"{self.config.prefix_url}{url}"
        try:
            response = httpx.get(full_url, timeout=60.0)
            response.raise_for_status()
            return response.text
        except httpx.HTTPError as e:
            raise RuntimeError(f"Failed to fetch URL: {e}")

    def extract_text_from_pdf(self, pdf_file) -> str:
        """Extract text content from PDF file"""
        try:
            # Gradio returns file path, not file object
            if isinstance(pdf_file, str):
                pdf_path = pdf_file
            else:
                # If it's a file object (shouldn't happen with Gradio)
                with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
                    tmp_file.write(pdf_file.read())
                    pdf_path = tmp_file.name
            
            # PDF 로드 및 텍스트 추출
            loader = PyPDFLoader(pdf_path)
            pages = loader.load()
            
            # 모든 페이지의 텍스트를 결합
            text = "\n".join([page.page_content for page in pages])
            
            # 임시 파일인 경우 삭제
            if not isinstance(pdf_file, str) and os.path.exists(pdf_path):
                os.unlink(pdf_path)
            
            return text
        except Exception as e:
            raise RuntimeError(f"Failed to extract text from PDF: {e}")

    def _get_messages_formatter_type(self, model_name):
        """Get appropriate message formatter for the model"""
        if "Mistral" in model_name or "BitSix" in model_name:
            return MessagesFormatterType.CHATML
        else:
            return MessagesFormatterType.LLAMA_3

    @spaces.GPU(duration=120)
    def extract_conversation_local(self, text: str, language: str = "English", progress=None) -> Dict:
        """Extract conversation using new local LLM with enhanced professional style"""
        try:
            # 검색 컨텍스트 생성 (키워드 기반이 아닌 경우)
            search_context = ""
            if BRAVE_KEY and not text.startswith("Keyword-based content:"):
                try:
                    keywords = extract_keywords_for_search(text, language)
                    if keywords:
                        search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
                        search_context = format_search_results(search_query)
                        print(f"Search context added for: {search_query}")
                except Exception as e:
                    print(f"Search failed, continuing without context: {e}")
            
            # 먼저 새로운 로컬 LLM 시도
            self.initialize_local_mode()
            
            chat_template = self._get_messages_formatter_type(self.config.local_model_name)
            provider = LlamaCppPythonProvider(self.local_llm)

            # 언어별 시스템 메시지
            system_messages = {
                "Korean": (
                    "당신은 한국의 유명 팟캐스트 전문 작가입니다. "
                    "청취자들이 깊이 있는 전문 지식을 얻을 수 있는 고품질 대담을 한국어로 만듭니다. "
                    "반드시 서로 존댓말을 사용하며, 12회의 대화 교환으로 구성하세요. "
                    "모든 대화는 반드시 한국어로 작성하고 JSON 형식으로만 응답하세요."
                ),
                "Japanese": (
                    "あなたは日本の有名なポッドキャスト専門作家です。"
                    "聴衆が深い専門知識を得られる高品質な対談を日本語で作成します。"
                    "必ずお互いに丁寧語を使用し、12回の対話交換で構成してください。"
                    "すべての対話は必ず日本語で作成し、JSON形式でのみ回答してください。"
                ),
                "French": (
                    "Vous êtes un célèbre scénariste de podcast professionnel français. "
                    "Créez des discussions de haute qualité en français qui donnent au public "
                    "des connaissances professionnelles approfondies. "
                    "Créez exactement 12 échanges de conversation et répondez uniquement en format JSON."
                ),
                "German": (
                    "Sie sind ein berühmter professioneller Podcast-Drehbuchautor aus Deutschland. "
                    "Erstellen Sie hochwertige Diskussionen auf Deutsch, die dem Publikum "
                    "tiefgreifendes Fachwissen vermitteln. "
                    "Erstellen Sie genau 12 Gesprächsaustausche und antworten Sie nur im JSON-Format."
                ),
                "Spanish": (
                    "Eres un famoso guionista de podcast profesional español. "
                    "Crea discusiones de alta calidad en español que brinden al público "
                    "conocimientos profesionales profundos. "
                    "Crea exactamente 12 intercambios de conversación y responde solo en formato JSON."
                ),
                "Chinese": (
                    "您是中国著名的专业播客编剧。"
                    "创建高质量的中文讨论,为观众提供深入的专业知识。"
                    "创建恰好12次对话交换,仅以JSON格式回答。"
                ),
                "Russian": (
                    "Вы известный профессиональный сценарист подкастов из России. "
                    "Создавайте высококачественные дискуссии на русском языке, которые дают аудитории "
                    "глубокие профессиональные знания. "
                    "Создайте ровно 12 обменов разговором и отвечайте только в формате JSON."
                )
            }
            
            system_message = system_messages.get(language, 
                f"You are a professional podcast scriptwriter creating high-quality, "
                f"insightful discussions in {language}. Create exactly 12 conversation exchanges "
                f"with professional expertise. All dialogue must be in {language}. "
                f"Respond only in JSON format."
            )

            agent = LlamaCppAgent(
                provider,
                system_prompt=system_message,
                predefined_messages_formatter_type=chat_template,
                debug_output=False
            )
            
            settings = provider.get_provider_default_settings()
            settings.temperature = 0.75
            settings.top_k = 40
            settings.top_p = 0.95
            settings.max_tokens = self.config.max_tokens
            settings.repeat_penalty = 1.1
            settings.stream = False

            messages = BasicChatHistory()
            
            prompt = self.prompt_builder.build_prompt(text, language, search_context)
            response = agent.get_chat_response(
                prompt,
                llm_sampling_settings=settings,
                chat_history=messages,
                returns_streaming_generator=False,
                print_output=False
            )

            # JSON 파싱
            pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
            json_match = re.search(pattern, response)
            
            if json_match:
                conversation_data = json.loads(json_match.group())
                return conversation_data
            else:
                raise ValueError("No valid JSON found in local LLM response")
                
        except Exception as e:
            print(f"Local LLM failed: {e}, falling back to legacy local method")
            return self.extract_conversation_legacy_local(text, language, progress, search_context)

    @spaces.GPU(duration=120)
    def extract_conversation_legacy_local(self, text: str, language: str = "English", progress=None, search_context: str = "") -> Dict:
        """Extract conversation using legacy local model"""
        try:
            self.initialize_legacy_local_mode()
            
            # 언어별 시스템 메시지는 config_prompts에서 가져옴
            messages = self.prompt_builder.build_messages_for_local(text, language, search_context)

            terminators = [
                self.legacy_tokenizer.eos_token_id,
                self.legacy_tokenizer.convert_tokens_to_ids("<|eot_id|>")
            ]

            chat_messages = self.legacy_tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )
            model_inputs = self.legacy_tokenizer([chat_messages], return_tensors="pt").to(self.device)
            
            streamer = TextIteratorStreamer(
                self.legacy_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
            )
            
            generate_kwargs = dict(
                model_inputs,
                streamer=streamer,
                max_new_tokens=self.config.max_new_tokens,
                do_sample=True,
                temperature=0.75,
                eos_token_id=terminators,
            )

            t = Thread(target=self.legacy_local_model.generate, kwargs=generate_kwargs)
            t.start()

            partial_text = ""
            for new_text in streamer:
                partial_text += new_text

            pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
            json_match = re.search(pattern, partial_text)
            
            if json_match:
                return json.loads(json_match.group())
            else:
                raise ValueError("No valid JSON found in legacy local response")
                
        except Exception as e:
            print(f"Legacy local model also failed: {e}")
            return DefaultConversations.get_conversation(language)

    def extract_conversation_api(self, text: str, language: str = "English") -> Dict:
        """Extract conversation using API"""
        if not self.llm_client:
            raise RuntimeError("API mode not initialized")

        try:
            # 검색 컨텍스트 생성
            search_context = ""
            if BRAVE_KEY and not text.startswith("Keyword-based content:"):
                try:
                    keywords = extract_keywords_for_search(text, language)
                    if keywords:
                        search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
                        search_context = format_search_results(search_query)
                        print(f"Search context added for: {search_query}")
                except Exception as e:
                    print(f"Search failed, continuing without context: {e}")

            # 메시지 빌드
            messages = self.prompt_builder.build_messages_for_local(text, language, search_context)

            chat_completion = self.llm_client.chat.completions.create(
                messages=messages,
                model=self.config.api_model_name,
                temperature=0.75,
            )

            pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
            json_match = re.search(pattern, chat_completion.choices[0].message.content)

            if not json_match:
                raise ValueError("No valid JSON found in response")

            return json.loads(json_match.group())
        except Exception as e:
            raise RuntimeError(f"Failed to extract conversation: {e}")

    def parse_conversation_text(self, conversation_text: str) -> Dict:
        """Parse conversation text back to JSON format"""
        lines = conversation_text.strip().split('\n')
        conversation_data = {"conversation": []}
        
        for line in lines:
            if ':' in line:
                speaker, text = line.split(':', 1)
                conversation_data["conversation"].append({
                    "speaker": speaker.strip(),
                    "text": text.strip()
                })
        
        return conversation_data

    async def text_to_speech_edge(self, conversation_json: Dict, language: str = "English") -> Tuple[str, str]:
        """Convert text to speech using Edge TTS"""
        output_dir = Path(self._create_output_directory())
        filenames = []

        try:
            # 언어별 음성 설정
            voices = EDGE_TTS_VOICES.get(language, EDGE_TTS_VOICES["English"])

            for i, turn in enumerate(conversation_json["conversation"]):
                filename = output_dir / f"output_{i}.wav"
                voice = voices[i % len(voices)]

                tmp_path = await self._generate_audio_edge(turn["text"], voice)
                os.rename(tmp_path, filename)
                filenames.append(str(filename))

            # Combine audio files
            final_output = os.path.join(output_dir, "combined_output.wav")
            self._combine_audio_files(filenames, final_output)
            
            # Generate conversation text
            conversation_text = "\n".join(
                f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
                for i, turn in enumerate(conversation_json["conversation"])
            )
            
            return final_output, conversation_text
        except Exception as e:
            raise RuntimeError(f"Failed to convert text to speech: {e}")

    async def _generate_audio_edge(self, text: str, voice: str) -> str:
        """Generate audio using Edge TTS"""
        if not text.strip():
            raise ValueError("Text cannot be empty")
            
        voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
        communicate = edge_tts.Communicate(text, voice_short_name)

        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)

        return tmp_path

    @spaces.GPU(duration=60)
    def text_to_speech_spark(self, conversation_json: Dict, language: str = "English", progress=None) -> Tuple[str, str]:
        """Convert text to speech using Spark TTS CLI"""
        if not SPARK_AVAILABLE or not self.spark_model_dir:
            raise RuntimeError("Spark TTS not available")

        try:
            output_dir = self._create_output_directory()
            audio_files = []
            
            # Create different voice characteristics for different speakers
            speaker1, speaker2 = self.prompt_builder.get_speaker_names(language)
            
            if language == "Korean":
                voice_configs = [
                    {"prompt_text": f"안녕하세요, 오늘 팟캐스트 진행을 맡은 {speaker1}입니다.", "gender": "male"},
                    {"prompt_text": f"안녕하세요, 저는 오늘 이 주제에 대해 설명드릴 {speaker2}입니다.", "gender": "male"}
                ]
            else:
                voice_configs = [
                    {"prompt_text": f"Hello everyone, I'm {speaker1}, your host for today's podcast.", "gender": "male"},
                    {"prompt_text": f"Hi, I'm {speaker2}. I'm excited to share my insights with you.", "gender": "male"}
                ]

            for i, turn in enumerate(conversation_json["conversation"]):
                text = turn["text"]
                if not text.strip():
                    continue
                
                voice_config = voice_configs[i % len(voice_configs)]
                output_file = os.path.join(output_dir, f"spark_output_{i}.wav")
                
                cmd = [
                    "python", "-m", "cli.inference",
                    "--text", text,
                    "--device", "0" if torch.cuda.is_available() else "cpu",
                    "--save_dir", output_dir,
                    "--model_dir", self.spark_model_dir,
                    "--prompt_text", voice_config["prompt_text"],
                    "--output_name", f"spark_output_{i}.wav"
                ]
                
                try:
                    result = subprocess.run(
                        cmd, 
                        capture_output=True, 
                        text=True, 
                        timeout=60,
                        cwd="."
                    )
                    
                    if result.returncode == 0:
                        audio_files.append(output_file)
                    else:
                        print(f"Spark TTS error for turn {i}: {result.stderr}")
                        silence = np.zeros(int(22050 * 1.0))
                        sf.write(output_file, silence, 22050)
                        audio_files.append(output_file)
                        
                except subprocess.TimeoutExpired:
                    print(f"Spark TTS timeout for turn {i}")
                    silence = np.zeros(int(22050 * 1.0))
                    sf.write(output_file, silence, 22050)
                    audio_files.append(output_file)
                except Exception as e:
                    print(f"Error running Spark TTS for turn {i}: {e}")
                    silence = np.zeros(int(22050 * 1.0))
                    sf.write(output_file, silence, 22050)
                    audio_files.append(output_file)

            # Combine all audio files
            if audio_files:
                final_output = os.path.join(output_dir, "spark_combined.wav")
                self._combine_audio_files(audio_files, final_output)
            else:
                raise RuntimeError("No audio files generated")

            conversation_text = "\n".join(
                f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
                for i, turn in enumerate(conversation_json["conversation"])
            )
            
            return final_output, conversation_text
            
        except Exception as e:
            raise RuntimeError(f"Failed to convert text to speech with Spark TTS: {e}")

    @spaces.GPU(duration=60)
    def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
        """Convert text to speech using MeloTTS"""
        if not MELO_AVAILABLE or not self.melo_models:
            raise RuntimeError("MeloTTS not available")

        speakers = ["EN-Default", "EN-US"]
        combined_audio = AudioSegment.empty()

        for i, turn in enumerate(conversation_json["conversation"]):
            bio = io.BytesIO()
            text = turn["text"]
            speaker = speakers[i % 2]
            speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
            
            self.melo_models["EN"].tts_to_file(
                text, speaker_id, bio, speed=1.0, 
                pbar=progress.tqdm if progress else None, 
                format="wav"
            )
            
            bio.seek(0)
            audio_segment = AudioSegment.from_file(bio, format="wav")
            combined_audio += audio_segment

        final_audio_path = "melo_podcast.mp3"
        combined_audio.export(final_audio_path, format="mp3")
        
        conversation_text = "\n".join(
            f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
            for i, turn in enumerate(import spaces
import gradio as gr
import os
import asyncio
import torch
import io
import json
import re
import httpx
import tempfile
import wave
import base64
import numpy as np
import soundfile as sf
import subprocess
import shutil
import requests
import logging
from datetime import datetime, timedelta
from typing import List, Tuple, Dict, Optional
from pathlib import Path
from threading import Thread
from dotenv import load_dotenv

# PDF processing imports
from langchain_community.document_loaders import PyPDFLoader

# Edge TTS imports
import edge_tts
from pydub import AudioSegment

# OpenAI imports
from openai import OpenAI

# Transformers imports (for legacy local mode)
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    BitsAndBytesConfig,
)

# Llama CPP imports (for new local mode)
try:
    from llama_cpp import Llama
    from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
    from llama_cpp_agent.providers import LlamaCppPythonProvider
    from llama_cpp_agent.chat_history import BasicChatHistory
    from llama_cpp_agent.chat_history.messages import Roles
    from huggingface_hub import hf_hub_download
    LLAMA_CPP_AVAILABLE = True
except ImportError:
    LLAMA_CPP_AVAILABLE = False

# Spark TTS imports
try:
    from huggingface_hub import snapshot_download
    SPARK_AVAILABLE = True
except:
    SPARK_AVAILABLE = False

# MeloTTS imports (for local mode)
try:
    # unidic 다운로드를 조건부로 처리
    if not os.path.exists("/usr/local/lib/python3.10/site-packages/unidic"):
        try:
            os.system("python -m unidic download")
        except:
            pass
    from melo.api import TTS as MeloTTS
    MELO_AVAILABLE = True
except:
    MELO_AVAILABLE = False

# Import config and prompts
from config_prompts import (
    ConversationConfig, 
    PromptBuilder, 
    DefaultConversations,
    EDGE_TTS_ONLY_LANGUAGES,
    EDGE_TTS_VOICES
)

load_dotenv()

# Brave Search API 설정
BRAVE_KEY = os.getenv("BSEARCH_API")
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"


def brave_search(query: str, count: int = 8, freshness_days: int | None = None):
    """Brave Search API를 사용하여 최신 정보 검색"""
    if not BRAVE_KEY:
        return []
    params = {"q": query, "count": str(count)}
    if freshness_days:
        dt_from = (datetime.utcnow() - timedelta(days=freshness_days)).strftime("%Y-%m-%d")
        params["freshness"] = dt_from
    try:
        r = requests.get(
            BRAVE_ENDPOINT,
            headers={"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY},
            params=params,
            timeout=15
        )
        raw = r.json().get("web", {}).get("results") or []
        return [{
            "title": r.get("title", ""),
            "url": r.get("url", r.get("link", "")),
            "snippet": r.get("description", r.get("text", "")),
            "host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0]
        } for r in raw[:count]]
    except Exception as e:
        logging.error(f"Brave search error: {e}")
        return []


def format_search_results(query: str, for_keyword: bool = False) -> str:
    """검색 결과를 포맷팅하여 반환"""
    # 키워드 검색의 경우 더 많은 결과 사용
    count = 5 if for_keyword else 3
    rows = brave_search(query, count, freshness_days=7 if not for_keyword else None)
    if not rows:
        return ""
    
    results = []
    # 키워드 검색의 경우 더 상세한 정보 포함
    max_results = 4 if for_keyword else 2
    for r in rows[:max_results]:
        if for_keyword:
            # 키워드 검색은 더 긴 스니펫 사용
            snippet = r['snippet'][:200] + "..." if len(r['snippet']) > 200 else r['snippet']
            results.append(f"**{r['title']}**\n{snippet}\nSource: {r['host']}")
        else:
            # 일반 검색은 짧은 스니펫
            snippet = r['snippet'][:100] + "..." if len(r['snippet']) > 100 else r['snippet']
            results.append(f"- {r['title']}: {snippet}")
    
    return "\n\n".join(results) + "\n"


def extract_keywords_for_search(text: str, language: str = "English") -> List[str]:
    """텍스트에서 검색할 키워드 추출 (개선)"""
    # 텍스트 앞부분만 사용 (너무 많은 텍스트 처리 방지)
    text_sample = text[:500]  
    
    if language == "Korean":
        import re
        # 한국어 명사 추출 (2글자 이상)
        keywords = re.findall(r'[가-힣]{2,}', text_sample)
        # 중복 제거하고 가장 긴 단어 1개만 선택
        unique_keywords = list(dict.fromkeys(keywords))
        # 길이 순으로 정렬하고 가장 의미있을 것 같은 단어 선택
        unique_keywords.sort(key=len, reverse=True)
        return unique_keywords[:1]  # 1개만 반환
    else:
        # 영어는 대문자로 시작하는 단어 중 가장 긴 것 1개
        words = text_sample.split()
        keywords = [word.strip('.,!?;:') for word in words 
                   if len(word) > 4 and word[0].isupper()]
        if keywords:
            return [max(keywords, key=len)]  # 가장 긴 단어 1개
        return []


def search_and_compile_content(keyword: str, language: str = "English") -> str:
    """키워드로 검색하여 충분한 콘텐츠 컴파일"""
    if not BRAVE_KEY:
        # API 없을 때도 기본 콘텐츠 생성
        if language == "Korean":
            return f"""
'{keyword}'에 대한 종합적인 정보:

{keyword}는 현대 사회에서 매우 중요한 주제입니다. 
이 주제는 다양한 측면에서 우리의 삶에 영향을 미치고 있으며, 
최근 들어 더욱 주목받고 있습니다.

주요 특징:
1. 기술적 발전과 혁신
2. 사회적 영향과 변화
3. 미래 전망과 가능성
4. 실용적 활용 방안
5. 글로벌 트렌드와 동향

전문가들은 {keyword}가 앞으로 더욱 중요해질 것으로 예상하고 있으며,
이에 대한 깊이 있는 이해가 필요한 시점입니다.
"""
        else:
            return f"""
Comprehensive information about '{keyword}':

{keyword} is a significant topic in modern society.
This subject impacts our lives in various ways and has been 
gaining increasing attention recently.

Key aspects:
1. Technological advancement and innovation
2. Social impact and changes
3. Future prospects and possibilities
4. Practical applications
5. Global trends and developments

Experts predict that {keyword} will become even more important,
and it's crucial to develop a deep understanding of this topic.
"""
    
    # 언어에 따른 다양한 검색 쿼리
    if language == "Korean":
        queries = [
            f"{keyword} 최신 뉴스 2024",
            f"{keyword} 정보 설명",
            f"{keyword} 트렌드 전망",
            f"{keyword} 장점 단점",
            f"{keyword} 활용 방법",
            f"{keyword} 전문가 의견"
        ]
    else:
        queries = [
            f"{keyword} latest news 2024",
            f"{keyword} explained comprehensive",
            f"{keyword} trends forecast",
            f"{keyword} advantages disadvantages",
            f"{keyword} how to use",
            f"{keyword} expert opinions"
        ]
    
    all_content = []
    total_content_length = 0
    
    for query in queries:
        results = brave_search(query, count=5)  # 더 많은 결과 가져오기
        for r in results[:3]:  # 각 쿼리당 상위 3개
            content = f"**{r['title']}**\n{r['snippet']}\nSource: {r['host']}\n"
            all_content.append(content)
            total_content_length += len(r['snippet'])
    
    # 콘텐츠가 부족하면 추가 생성
    if total_content_length < 1000:  # 최소 1000자 확보
        if language == "Korean":
            additional_content = f"""
추가 정보:
{keyword}와 관련된 최근 동향을 살펴보면, 이 분야는 빠르게 발전하고 있습니다.
많은 전문가들이 이 주제에 대해 활발히 연구하고 있으며, 
실생활에서의 응용 가능성도 계속 확대되고 있습니다.

특히 주목할 점은:
- 기술 혁신의 가속화
- 사용자 경험의 개선
- 접근성의 향상
- 비용 효율성 증대
- 글로벌 시장의 성장

이러한 요소들이 {keyword}의 미래를 더욱 밝게 만들고 있습니다.
"""
        else:
            additional_content = f"""
Additional insights:
Recent developments in {keyword} show rapid advancement in this field.
Many experts are actively researching this topic, and its practical 
applications continue to expand.

Key points to note:
- Accelerating technological innovation
- Improving user experience
- Enhanced accessibility
- Increased cost efficiency
- Growing global market

These factors are making the future of {keyword} increasingly promising.
"""
        all_content.append(additional_content)
    
    # 컴파일된 콘텐츠 반환
    compiled = "\n\n".join(all_content)
    
    # 키워드 기반 소개
    if language == "Korean":
        intro = f"### '{keyword}'에 대한 종합적인 정보와 최신 동향:\n\n"
    else:
        intro = f"### Comprehensive information and latest trends about '{keyword}':\n\n"
    
    return intro + compiled


class UnifiedAudioConverter:
    def __init__(self, config: ConversationConfig):
        self.config = config
        self.llm_client = None
        self.legacy_local_model = None
        self.legacy_tokenizer = None
        # 새로운 로컬 LLM 관련
        self.local_llm = None
        self.local_llm_model = None
        self.melo_models = None
        self.spark_model_dir = None
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # 프롬프트 빌더 추가
        self.prompt_builder = PromptBuilder()
        
    def initialize_api_mode(self, api_key: str):
        """Initialize API mode with Together API"""
        self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
        
    @spaces.GPU(duration=120)
    def initialize_local_mode(self):
        """Initialize new local mode with Llama CPP"""
        if not LLAMA_CPP_AVAILABLE:
            raise RuntimeError("Llama CPP dependencies not available. Please install llama-cpp-python and llama-cpp-agent.")
        
        if self.local_llm is None or self.local_llm_model != self.config.local_model_name:
            try:
                # 모델 다운로드
                model_path = hf_hub_download(
                    repo_id=self.config.local_model_repo,
                    filename=self.config.local_model_name,
                    local_dir="./models"
                )
                
                model_path_local = os.path.join("./models", self.config.local_model_name)
                
                if not os.path.exists(model_path_local):
                    raise RuntimeError(f"Model file not found at {model_path_local}")
                
                # Llama 모델 초기화
                self.local_llm = Llama(
                    model_path=model_path_local,
                    flash_attn=True,
                    n_gpu_layers=81 if torch.cuda.is_available() else 0,
                    n_batch=1024,
                    n_ctx=16384,
                )
                self.local_llm_model = self.config.local_model_name
                print(f"Local LLM initialized: {model_path_local}")
                
            except Exception as e:
                print(f"Failed to initialize local LLM: {e}")
                raise RuntimeError(f"Failed to initialize local LLM: {e}")

    @spaces.GPU(duration=60)
    def initialize_legacy_local_mode(self):
        """Initialize legacy local mode with Hugging Face model (fallback)"""
        if self.legacy_local_model is None:
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True, 
                bnb_4bit_compute_dtype=torch.float16
            )
            self.legacy_local_model = AutoModelForCausalLM.from_pretrained(
                self.config.legacy_local_model_name, 
                quantization_config=quantization_config
            )
            self.legacy_tokenizer = AutoTokenizer.from_pretrained(
                self.config.legacy_local_model_name,
                revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
            )

    def initialize_spark_tts(self):
        """Initialize Spark TTS model by downloading if needed"""
        if not SPARK_AVAILABLE:
            raise RuntimeError("Spark TTS dependencies not available")
        
        model_dir = "pretrained_models/Spark-TTS-0.5B"
        
        # Check if model exists, if not download it
        if not os.path.exists(model_dir):
            print("Downloading Spark-TTS model...")
            try:
                os.makedirs("pretrained_models", exist_ok=True)
                snapshot_download(
                    "SparkAudio/Spark-TTS-0.5B", 
                    local_dir=model_dir
                )
                print("Spark-TTS model downloaded successfully")
            except Exception as e:
                raise RuntimeError(f"Failed to download Spark-TTS model: {e}")
        
        self.spark_model_dir = model_dir
        
        # Check if we have the CLI inference script
        if not os.path.exists("cli/inference.py"):
            print("Warning: Spark-TTS CLI not found. Please clone the Spark-TTS repository.")

    @spaces.GPU(duration=60)
    def initialize_melo_tts(self):
        """Initialize MeloTTS models"""        
        if MELO_AVAILABLE and self.melo_models is None:
            self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}

    def fetch_text(self, url: str) -> str:
        """Fetch text content from URL"""
        if not url:
            raise ValueError("URL cannot be empty")
            
        if not url.startswith("http://") and not url.startswith("https://"):
            raise ValueError("URL must start with 'http://' or 'https://'")

        full_url = f"{self.config.prefix_url}{url}"
        try:
            response = httpx.get(full_url, timeout=60.0)
            response.raise_for_status()
            return response.text
        except httpx.HTTPError as e:
            raise RuntimeError(f"Failed to fetch URL: {e}")

    def extract_text_from_pdf(self, pdf_file) -> str:
        """Extract text content from PDF file"""
        try:
            # Gradio returns file path, not file object
            if isinstance(pdf_file, str):
                pdf_path = pdf_file
            else:
                # If it's a file object (shouldn't happen with Gradio)
                with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
                    tmp_file.write(pdf_file.read())
                    pdf_path = tmp_file.name
            
            # PDF 로드 및 텍스트 추출
            loader = PyPDFLoader(pdf_path)
            pages = loader.load()
            
            # 모든 페이지의 텍스트를 결합
            text = "\n".join([page.page_content for page in pages])
            
            # 임시 파일인 경우 삭제
            if not isinstance(pdf_file, str) and os.path.exists(pdf_path):
                os.unlink(pdf_path)
            
            return text
        except Exception as e:
            raise RuntimeError(f"Failed to extract text from PDF: {e}")

    def _get_messages_formatter_type(self, model_name):
        """Get appropriate message formatter for the model"""
        if "Mistral" in model_name or "BitSix" in model_name:
            return MessagesFormatterType.CHATML
        else:
            return MessagesFormatterType.LLAMA_3

    @spaces.GPU(duration=120)
    def extract_conversation_local(self, text: str, language: str = "English", progress=None) -> Dict:
        """Extract conversation using new local LLM with enhanced professional style"""
        try:
            # 검색 컨텍스트 생성 (키워드 기반이 아닌 경우)
            search_context = ""
            if BRAVE_KEY and not text.startswith("Keyword-based content:"):
                try:
                    keywords = extract_keywords_for_search(text, language)
                    if keywords:
                        search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
                        search_context = format_search_results(search_query)
                        print(f"Search context added for: {search_query}")
                except Exception as e:
                    print(f"Search failed, continuing without context: {e}")
            
            # 먼저 새로운 로컬 LLM 시도
            self.initialize_local_mode()
            
            chat_template = self._get_messages_formatter_type(self.config.local_model_name)
            provider = LlamaCppPythonProvider(self.local_llm)

            # 언어별 시스템 메시지
            system_messages = {
                "Korean": (
                    "당신은 한국의 유명 팟캐스트 전문 작가입니다. "
                    "청취자들이 깊이 있는 전문 지식을 얻을 수 있는 고품질 대담을 한국어로 만듭니다. "
                    "반드시 서로 존댓말을 사용하며, 12회의 대화 교환으로 구성하세요. "
                    "모든 대화는 반드시 한국어로 작성하고 JSON 형식으로만 응답하세요."
                ),
                "Japanese": (
                    "あなたは日本の有名なポッドキャスト専門作家です。"
                    "聴衆が深い専門知識を得られる高品質な対談を日本語で作成します。"
                    "必ずお互いに丁寧語を使用し、12回の対話交換で構成してください。"
                    "すべての対話は必ず日本語で作成し、JSON形式でのみ回答してください。"
                ),
                "French": (
                    "Vous êtes un célèbre scénariste de podcast professionnel français. "
                    "Créez des discussions de haute qualité en français qui donnent au public "
                    "des connaissances professionnelles approfondies. "
                    "Créez exactement 12 échanges de conversation et répondez uniquement en format JSON."
                ),
                "German": (
                    "Sie sind ein berühmter professioneller Podcast-Drehbuchautor aus Deutschland. "
                    "Erstellen Sie hochwertige Diskussionen auf Deutsch, die dem Publikum "
                    "tiefgreifendes Fachwissen vermitteln. "
                    "Erstellen Sie genau 12 Gesprächsaustausche und antworten Sie nur im JSON-Format."
                ),
                "Spanish": (
                    "Eres un famoso guionista de podcast profesional español. "
                    "Crea discusiones de alta calidad en español que brinden al público "
                    "conocimientos profesionales profundos. "
                    "Crea exactamente 12 intercambios de conversación y responde solo en formato JSON."
                ),
                "Chinese": (
                    "您是中国著名的专业播客编剧。"
                    "创建高质量的中文讨论,为观众提供深入的专业知识。"
                    "创建恰好12次对话交换,仅以JSON格式回答。"
                ),
                "Russian": (
                    "Вы известный профессиональный сценарист подкастов из России. "
                    "Создавайте высококачественные дискуссии на русском языке, которые дают аудитории "
                    "глубокие профессиональные знания. "
                    "Создайте ровно 12 обменов разговором и отвечайте только в формате JSON."
                )
            }
            
            system_message = system_messages.get(language, 
                f"You are a professional podcast scriptwriter creating high-quality, "
                f"insightful discussions in {language}. Create exactly 12 conversation exchanges "
                f"with professional expertise. All dialogue must be in {language}. "
                f"Respond only in JSON format."
            )

            agent = LlamaCppAgent(
                provider,
                system_prompt=system_message,
                predefined_messages_formatter_type=chat_template,
                debug_output=False
            )
            
            settings = provider.get_provider_default_settings()
            settings.temperature = 0.75
            settings.top_k = 40
            settings.top_p = 0.95
            settings.max_tokens = self.config.max_tokens
            settings.repeat_penalty = 1.1
            settings.stream = False

            messages = BasicChatHistory()
            
            prompt = self.prompt_builder.build_prompt(text, language, search_context)
            response = agent.get_chat_response(
                prompt,
                llm_sampling_settings=settings,
                chat_history=messages,
                returns_streaming_generator=False,
                print_output=False
            )

            # JSON 파싱
            pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
            json_match = re.search(pattern, response)
            
            if json_match:
                conversation_data = json.loads(json_match.group())
                return conversation_data
            else:
                raise ValueError("No valid JSON found in local LLM response")
                
        except Exception as e:
            print(f"Local LLM failed: {e}, falling back to legacy local method")
            return self.extract_conversation_legacy_local(text, language, progress, search_context)

    @spaces.GPU(duration=120)
    def extract_conversation_legacy_local(self, text: str, language: str = "English", progress=None, search_context: str = "") -> Dict:
        """Extract conversation using legacy local model"""
        try:
            self.initialize_legacy_local_mode()
            
            # 언어별 시스템 메시지는 config_prompts에서 가져옴
            messages = self.prompt_builder.build_messages_for_local(text, language, search_context)

            terminators = [
                self.legacy_tokenizer.eos_token_id,
                self.legacy_tokenizer.convert_tokens_to_ids("<|eot_id|>")
            ]

            chat_messages = self.legacy_tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )
            model_inputs = self.legacy_tokenizer([chat_messages], return_tensors="pt").to(self.device)
            
            streamer = TextIteratorStreamer(
                self.legacy_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
            )
            
            generate_kwargs = dict(
                model_inputs,
                streamer=streamer,
                max_new_tokens=self.config.max_new_tokens,
                do_sample=True,
                temperature=0.75,
                eos_token_id=terminators,
            )

            t = Thread(target=self.legacy_local_model.generate, kwargs=generate_kwargs)
            t.start()

            partial_text = ""
            for new_text in streamer:
                partial_text += new_text

            pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
            json_match = re.search(pattern, partial_text)
            
            if json_match:
                return json.loads(json_match.group())
            else:
                raise ValueError("No valid JSON found in legacy local response")
                
        except Exception as e:
            print(f"Legacy local model also failed: {e}")
            return DefaultConversations.get_conversation(language)

    def extract_conversation_api(self, text: str, language: str = "English") -> Dict:
        """Extract conversation using API"""
        if not self.llm_client:
            raise RuntimeError("API mode not initialized")

        try:
            # 검색 컨텍스트 생성
            search_context = ""
            if BRAVE_KEY and not text.startswith("Keyword-based content:"):
                try:
                    keywords = extract_keywords_for_search(text, language)
                    if keywords:
                        search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
                        search_context = format_search_results(search_query)
                        print(f"Search context added for: {search_query}")
                except Exception as e:
                    print(f"Search failed, continuing without context: {e}")

            # 메시지 빌드
            messages = self.prompt_builder.build_messages_for_local(text, language, search_context)

            chat_completion = self.llm_client.chat.completions.create(
                messages=messages,
                model=self.config.api_model_name,
                temperature=0.75,
            )

            pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
            json_match = re.search(pattern, chat_completion.choices[0].message.content)

            if not json_match:
                raise ValueError("No valid JSON found in response")

            return json.loads(json_match.group())
        except Exception as e:
            raise RuntimeError(f"Failed to extract conversation: {e}")

    def parse_conversation_text(self, conversation_text: str) -> Dict:
        """Parse conversation text back to JSON format"""
        lines = conversation_text.strip().split('\n')
        conversation_data = {"conversation": []}
        
        for line in lines:
            if ':' in line:
                speaker, text = line.split(':', 1)
                conversation_data["conversation"].append({
                    "speaker": speaker.strip(),
                    "text": text.strip()
                })
        
        return conversation_data

    async def text_to_speech_edge(self, conversation_json: Dict, language: str = "English") -> Tuple[str, str]:
        """Convert text to speech using Edge TTS"""
        output_dir = Path(self._create_output_directory())
        filenames = []

        try:
            # 언어별 음성 설정
            voices = EDGE_TTS_VOICES.get(language, EDGE_TTS_VOICES["English"])

            for i, turn in enumerate(conversation_json["conversation"]):
                filename = output_dir / f"output_{i}.wav"
                voice = voices[i % len(voices)]

                tmp_path = await self._generate_audio_edge(turn["text"], voice)
                os.rename(tmp_path, filename)
                filenames.append(str(filename))

            # Combine audio files
            final_output = os.path.join(output_dir, "combined_output.wav")
            self._combine_audio_files(filenames, final_output)
            
            # Generate conversation text
            conversation_text = "\n".join(
                f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
                for i, turn in enumerate(conversation_json["conversation"])
            )
            
            return final_output, conversation_text
        except Exception as e:
            raise RuntimeError(f"Failed to convert text to speech: {e}")

    async def _generate_audio_edge(self, text: str, voice: str) -> str:
        """Generate audio using Edge TTS"""
        if not text.strip():
            raise ValueError("Text cannot be empty")
            
        voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
        communicate = edge_tts.Communicate(text, voice_short_name)

        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)

        return tmp_path

    @spaces.GPU(duration=60)
    def text_to_speech_spark(self, conversation_json: Dict, language: str = "English", progress=None) -> Tuple[str, str]:
        """Convert text to speech using Spark TTS CLI"""
        if not SPARK_AVAILABLE or not self.spark_model_dir:
            raise RuntimeError("Spark TTS not available")

        try:
            output_dir = self._create_output_directory()
            audio_files = []
            
            # Create different voice characteristics for different speakers
            speaker1, speaker2 = self.prompt_builder.get_speaker_names(language)
            
            if language == "Korean":
                voice_configs = [
                    {"prompt_text": f"안녕하세요, 오늘 팟캐스트 진행을 맡은 {speaker1}입니다.", "gender": "male"},
                    {"prompt_text": f"안녕하세요, 저는 오늘 이 주제에 대해 설명드릴 {speaker2}입니다.", "gender": "male"}
                ]
            else:
                voice_configs = [
                    {"prompt_text": f"Hello everyone, I'm {speaker1}, your host for today's podcast.", "gender": "male"},
                    {"prompt_text": f"Hi, I'm {speaker2}. I'm excited to share my insights with you.", "gender": "male"}
                ]

            for i, turn in enumerate(conversation_json["conversation"]):
                text = turn["text"]
                if not text.strip():
                    continue
                
                voice_config = voice_configs[i % len(voice_configs)]
                output_file = os.path.join(output_dir, f"spark_output_{i}.wav")
                
                cmd = [
                    "python", "-m", "cli.inference",
                    "--text", text,
                    "--device", "0" if torch.cuda.is_available() else "cpu",
                    "--save_dir", output_dir,
                    "--model_dir", self.spark_model_dir,
                    "--prompt_text", voice_config["prompt_text"],
                    "--output_name", f"spark_output_{i}.wav"
                ]
                
                try:
                    result = subprocess.run(
                        cmd, 
                        capture_output=True, 
                        text=True, 
                        timeout=60,
                        cwd="."
                    )
                    
                    if result.returncode == 0:
                        audio_files.append(output_file)
                    else:
                        print(f"Spark TTS error for turn {i}: {result.stderr}")
                        silence = np.zeros(int(22050 * 1.0))
                        sf.write(output_file, silence, 22050)
                        audio_files.append(output_file)
                        
                except subprocess.TimeoutExpired:
                    print(f"Spark TTS timeout for turn {i}")
                    silence = np.zeros(int(22050 * 1.0))
                    sf.write(output_file, silence, 22050)
                    audio_files.append(output_file)
                except Exception as e:
                    print(f"Error running Spark TTS for turn {i}: {e}")
                    silence = np.zeros(int(22050 * 1.0))
                    sf.write(output_file, silence, 22050)
                    audio_files.append(output_file)

            # Combine all audio files
            if audio_files:
                final_output = os.path.join(output_dir, "spark_combined.wav")
                self._combine_audio_files(audio_files, final_output)
            else:
                raise RuntimeError("No audio files generated")

            conversation_text = "\n".join(
                f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
                for i, turn in enumerate(conversation_json["conversation"])
            )
            
            return final_output, conversation_text
            
        except Exception as e:
            raise RuntimeError(f"Failed to convert text to speech with Spark TTS: {e}")

    @spaces.GPU(duration=60)
    def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
        """Convert text to speech using MeloTTS"""
        if not MELO_AVAILABLE or not self.melo_models:
            raise RuntimeError("MeloTTS not available")

        speakers = ["EN-Default", "EN-US"]
        combined_audio = AudioSegment.empty()

        for i, turn in enumerate(conversation_json["conversation"]):
            bio = io.BytesIO()
            text = turn["text"]
            speaker = speakers[i % 2]
            speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
            
            self.melo_models["EN"].tts_to_file(
                text, speaker_id, bio, speed=1.0, 
                pbar=progress.tqdm if progress else None, 
                format="wav"
            )
            
            bio.seek(0)
            audio_segment = AudioSegment.from_file(bio, format="wav")
            combined_audio += audio_segment

        final_audio_path = "melo_podcast.mp3"
        combined_audio.export(final_audio_path, format="mp3")
        
        conversation_text = "\n".join(
            f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
            for i, turn in enumerate(







conversation_json["conversation"])
        )
        
        return final_audio_path, conversation_text

    def _create_output_directory(self) -> str:
        """Create a unique output directory"""
        random_bytes = os.urandom(8)
        folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
        os.makedirs(folder_name, exist_ok=True)
        return folder_name

    def _combine_audio_files(self, filenames: List[str], output_file: str) -> None:
        """Combine multiple audio files into one"""
        if not filenames:
            raise ValueError("No input files provided")

        try:
            audio_segments = []
            for filename in filenames:
                if os.path.exists(filename):
                    audio_segment = AudioSegment.from_file(filename)
                    audio_segments.append(audio_segment)

            if audio_segments:
                combined = sum(audio_segments)
                combined.export(output_file, format="wav")

            # Clean up temporary files
            for filename in filenames:
                if os.path.exists(filename):
                    os.remove(filename)

        except Exception as e:
            raise RuntimeError(f"Failed to combine audio files: {e}")


# Global converter instance
converter = UnifiedAudioConverter(ConversationConfig())


async def synthesize(article_input, input_type: str = "URL", mode: str = "Local", tts_engine: str = "Edge-TTS", language: str = "English"):
    """Main synthesis function - handles URL, PDF, and Keyword inputs"""
    try:
        # Extract text based on input type
        if input_type == "URL":
            if not article_input or not isinstance(article_input, str):
                return "Please provide a valid URL.", None
            text = converter.fetch_text(article_input)
        elif input_type == "PDF":
            if not article_input:
                return "Please upload a PDF file.", None
            text = converter.extract_text_from_pdf(article_input)
        else:  # Keyword
            if not article_input or not isinstance(article_input, str):
                return "Please provide a keyword or topic.", None
            text = search_and_compile_content(article_input, language)
            text = f"Keyword-based content:\n{text}"

        # Limit text to max words
        words = text.split()
        if len(words) > converter.config.max_words:
            text = " ".join(words[:converter.config.max_words])

        # Extract conversation based on mode
        if mode == "Local":
            try:
                conversation_json = converter.extract_conversation_local(text, language)
            except Exception as e:
                print(f"Local mode failed: {e}, trying API fallback")
                api_key = os.environ.get("TOGETHER_API_KEY")
                if api_key:
                    converter.initialize_api_mode(api_key)
                    conversation_json = converter.extract_conversation_api(text, language)
                else:
                    raise RuntimeError("Local mode failed and no API key available for fallback")
        else:  # API mode
            api_key = os.environ.get("TOGETHER_API_KEY")
            if not api_key:
                print("API key not found, falling back to local mode")
                conversation_json = converter.extract_conversation_local(text, language)
            else:
                try:
                    converter.initialize_api_mode(api_key)
                    conversation_json = converter.extract_conversation_api(text, language)
                except Exception as e:
                    print(f"API mode failed: {e}, falling back to local mode")
                    conversation_json = converter.extract_conversation_local(text, language)

        # Generate conversation text
        conversation_text = "\n".join(
            f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}" 
            for i, turn in enumerate(conversation_json["conversation"])
        )

        return conversation_text, None
        
    except Exception as e:
        return f"Error: {str(e)}", None


async def regenerate_audio(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
    """Regenerate audio from edited conversation text"""
    if not conversation_text.strip():
        return "Please provide conversation text.", None

    try:
        conversation_json = converter.parse_conversation_text(conversation_text)
        
        if not conversation_json["conversation"]:
            return "No valid conversation found in the text.", None

        # Edge TTS 전용 언어는 자동으로 Edge-TTS 사용
        if language in EDGE_TTS_ONLY_LANGUAGES and tts_engine != "Edge-TTS":
            tts_engine = "Edge-TTS"

        # Generate audio based on TTS engine
        if tts_engine == "Edge-TTS":
            output_file, _ = await converter.text_to_speech_edge(conversation_json, language)
        elif tts_engine == "Spark-TTS":
            if not SPARK_AVAILABLE:
                return "Spark TTS not available. Please install required dependencies and clone the Spark-TTS repository.", None
            converter.initialize_spark_tts()
            output_file, _ = converter.text_to_speech_spark(conversation_json, language)
        else:  # MeloTTS
            if not MELO_AVAILABLE:
                return "MeloTTS not available. Please install required dependencies.", None
            if language in EDGE_TTS_ONLY_LANGUAGES:
                return f"MeloTTS does not support {language}. Please use Edge-TTS for this language.", None
            converter.initialize_melo_tts()
            output_file, _ = converter.text_to_speech_melo(conversation_json)

        return "Audio generated successfully!", output_file
        
    except Exception as e:
        return f"Error generating audio: {str(e)}", None


def synthesize_sync(article_input, input_type: str = "URL", mode: str = "Local", tts_engine: str = "Edge-TTS", language: str = "English"):
    """Synchronous wrapper for async synthesis"""
    return asyncio.run(synthesize(article_input, input_type, mode, tts_engine, language))


def regenerate_audio_sync(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
    """Synchronous wrapper for async audio regeneration"""
    return asyncio.run(regenerate_audio(conversation_text, tts_engine, language))


def update_tts_engine_for_language(language):
    """언어별 TTS 엔진 옵션 업데이트"""
    if language in EDGE_TTS_ONLY_LANGUAGES:
        language_info = {
            "Korean": "한국어는 Edge-TTS만 지원됩니다",
            "Japanese": "日本語はEdge-TTSのみサポートされています",
            "French": "Le français n'est pris en charge que par Edge-TTS",
            "German": "Deutsch wird nur von Edge-TTS unterstützt",
            "Spanish": "El español solo es compatible con Edge-TTS",
            "Italian": "L'italiano è supportato solo da Edge-TTS",
            "Portuguese": "O português é suportado apenas pelo Edge-TTS",
            "Dutch": "Nederlands wordt alleen ondersteund door Edge-TTS",
            "Thai": "ภาษาไทยรองรับเฉพาะ Edge-TTS เท่านั้น",
            "Vietnamese": "Tiếng Việt chỉ được hỗ trợ bởi Edge-TTS",
            "Arabic": "العربية مدعومة فقط من Edge-TTS",
            "Hebrew": "עברית נתמכת רק על ידי Edge-TTS",
            "Indonesian": "Bahasa Indonesia hanya didukung oleh Edge-TTS",
            "Hindi": "हिंदी केवल Edge-TTS द्वारा समर्थित है",
            "Russian": "Русский поддерживается только Edge-TTS",
            "Chinese": "中文仅支持Edge-TTS"
        }
        info_text = language_info.get(language, f"{language} is only supported by Edge-TTS")
        
        return gr.Radio(
            choices=["Edge-TTS"],
            value="Edge-TTS",
            label="TTS Engine",
            info=info_text,
            interactive=False
        )
    else:
        return gr.Radio(
            choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
            value="Edge-TTS",
            label="TTS Engine",
            info="Edge-TTS: Cloud-based, natural voices | Spark-TTS: Local AI model | MeloTTS: Local, requires GPU",
            interactive=True
        )


def toggle_input_visibility(input_type):
    """Toggle visibility of URL input, file upload, and keyword input based on input type"""
    if input_type == "URL":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
    elif input_type == "PDF":
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
    else:  # Keyword
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)


# 모델 초기화 (앱 시작 시)
if LLAMA_CPP_AVAILABLE:
    try:
        model_path = hf_hub_download(
            repo_id=converter.config.local_model_repo,
            filename=converter.config.local_model_name,
            local_dir="./models"
        )
        print(f"Model downloaded to: {model_path}")
    except Exception as e:
        print(f"Failed to download model at startup: {e}")


# Gradio Interface - 개선된 다국어 레이아웃
with gr.Blocks(theme='soft', title="AI Podcast Generator", css="""
    .container {max-width: 1200px; margin: auto; padding: 20px;}
    .header-text {text-align: center; margin-bottom: 30px;}
    .input-group {background: #f7f7f7; padding: 20px; border-radius: 10px; margin-bottom: 20px;}
    .output-group {background: #f0f0f0; padding: 20px; border-radius: 10px;}
    .status-box {background: #e8f4f8; padding: 15px; border-radius: 8px; margin-top: 10px;}
""") as demo:
    with gr.Column(elem_classes="container"):
        # 헤더
        with gr.Row(elem_classes="header-text"):
            gr.Markdown("""
            # 🎙️ AI Podcast Generator - Professional Multi-Language Edition
            ### Convert any article, blog, PDF document, or topic into an engaging professional podcast conversation in 24+ languages!
            """)

        with gr.Row(elem_classes="discord-badge"):
            gr.HTML("""
            <p style="text-align: center;">
                <a href="https://discord.gg/openfreeai" target="_blank">
                    <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="badge">
                </a>
            </p>
            """)

        # 상태 표시 섹션
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(f"""
                #### 🤖 System Status
                - **LLM**: {converter.config.local_model_name.split('.')[0]}
                - **Fallback**: {converter.config.api_model_name.split('/')[-1]}
                - **Llama CPP**: {"✅ Ready" if LLAMA_CPP_AVAILABLE else "❌ Not Available"}
                - **Search**: {"✅ Brave API" if BRAVE_KEY else "❌ No API"}
                """)
            with gr.Column(scale=1):
                gr.Markdown("""
                #### 🌍 Multi-Language Support
                - **24+ Languages**: Korean, Japanese, French, German, Spanish, Italian, etc.
                - **Native Voices**: Optimized for each language
                - **Professional Style**: Expert discussions with data & insights
                - **Auto-TTS Selection**: Best engine per language
                """)
        
        # 메인 입력 섹션
        with gr.Group(elem_classes="input-group"):
            with gr.Row():
                # 왼쪽: 입력 옵션들
                with gr.Column(scale=2):
                    # 입력 타입 선택
                    input_type_selector = gr.Radio(
                        choices=["URL", "PDF", "Keyword"],
                        value="URL",
                        label="📥 Input Type",
                        info="Choose your content source"
                    )
                    
                    # URL 입력
                    url_input = gr.Textbox(
                        label="🔗 Article URL", 
                        placeholder="Enter the article URL here...",
                        value="",
                        visible=True,
                        lines=2
                    )
                    
                    # PDF 업로드
                    pdf_input = gr.File(
                        label="📄 Upload PDF",
                        file_types=[".pdf"],
                        visible=False
                    )
                    
                    # 키워드 입력
                    keyword_input = gr.Textbox(
                        label="🔍 Topic/Keyword",
                        placeholder="Enter a topic (e.g., 'AI trends 2024', '인공지능', 'IA tendances', 'KI Trends')",
                        value="",
                        visible=False,
                        info="System will search and compile latest information",
                        lines=2
                    )
                
                # 오른쪽: 설정 옵션들
                with gr.Column(scale=1):
                    # 언어 선택
                    language_selector = gr.Radio(
                        choices=[
                            "English", "Korean", "Japanese", "French", "German", 
                            "Spanish", "Italian", "Portuguese", "Dutch", "Thai", 
                            "Vietnamese", "Arabic", "Hebrew", "Indonesian", "Hindi", 
                            "Russian", "Chinese", "Norwegian", "Swedish", "Finnish", 
                            "Danish", "Polish", "Turkish", "Greek", "Czech"
                        ],
                        value="English",
                        label="🌐 Language / 언어 / 语言",
                        info="Select podcast language"
                    )
                    
                    # 처리 모드
                    mode_selector = gr.Radio(
                        choices=["Local", "API"],
                        value="Local",
                        label="⚙️ Processing Mode",
                        info="Local: On-device | API: Cloud"
                    )
                    
                    # TTS 엔진
                    tts_selector = gr.Radio(
                        choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
                        value="Edge-TTS",
                        label="🔊 TTS Engine",
                        info="Voice synthesis engine"
                    )
            
            # 생성 버튼
            with gr.Row():
                convert_btn = gr.Button(
                    "🎯 Generate Professional Conversation", 
                    variant="primary", 
                    size="lg",
                    scale=1
                )
        
        # 출력 섹션
        with gr.Group(elem_classes="output-group"):
            with gr.Row():
                # 왼쪽: 대화 텍스트
                with gr.Column(scale=3):
                    conversation_output = gr.Textbox(
                        label="💬 Generated Professional Conversation (Editable)",
                        lines=25,
                        max_lines=50,
                        interactive=True,
                        placeholder="Professional podcast conversation will appear here...\n전문 팟캐스트 대화가 여기에 표시됩니다...\nLa conversation professionnelle du podcast apparaîtra ici...",
                        info="Edit the conversation as needed. Format: 'Speaker Name: Text'"
                    )
                    
                    # 오디오 생성 버튼
                    with gr.Row():
                        generate_audio_btn = gr.Button(
                            "🎙️ Generate Audio from Text", 
                            variant="secondary", 
                            size="lg"
                        )
                
                # 오른쪽: 오디오 출력 및 상태
                with gr.Column(scale=2):
                    audio_output = gr.Audio(
                        label="🎧 Professional Podcast Audio",
                        type="filepath",
                        interactive=False
                    )
                    
                    status_output = gr.Textbox(
                        label="📊 Status",
                        interactive=False,
                        lines=3,
                        elem_classes="status-box"
                    )
                    
                    # 도움말
                    gr.Markdown("""
                    #### 💡 Quick Tips:
                    - **URL**: Paste any article link
                    - **PDF**: Upload documents directly  
                    - **Keyword**: Enter topics for AI research
                    - **24+ Languages** fully supported
                    - Edit conversation before audio generation
                    - Auto TTS engine selection per language
                    """)
        
        # 예제 섹션
        with gr.Accordion("📚 Multi-Language Examples", open=False):
            gr.Examples(
                examples=[
                    ["https://huggingface.co/blog/openfreeai/cycle-navigator", "URL", "Local", "Edge-TTS", "English"],
                    ["quantum computing breakthroughs", "Keyword", "Local", "Edge-TTS", "English"],
                    ["인공지능 윤리와 규제", "Keyword", "Local", "Edge-TTS", "Korean"],
                    ["https://huggingface.co/papers/2505.14810", "URL", "Local", "Edge-TTS", "Japanese"],
                    ["intelligence artificielle tendances", "Keyword", "Local", "Edge-TTS", "French"],
                    ["künstliche intelligenz entwicklung", "Keyword", "Local", "Edge-TTS", "German"],
                    ["inteligencia artificial avances", "Keyword", "Local", "Edge-TTS", "Spanish"],
                ],
                inputs=[url_input, input_type_selector, mode_selector, tts_selector, language_selector],
                outputs=[conversation_output, status_output],
                fn=synthesize_sync,
                cache_examples=False,
            )
    
    # Input type change handler
    input_type_selector.change(
        fn=toggle_input_visibility,
        inputs=[input_type_selector],
        outputs=[url_input, pdf_input, keyword_input]
    )
    
    # 언어 변경 시 TTS 엔진 옵션 업데이트
    language_selector.change(
        fn=update_tts_engine_for_language,
        inputs=[language_selector],
        outputs=[tts_selector]
    )
    
    # 이벤트 연결
    def get_article_input(input_type, url_input, pdf_input, keyword_input):
        """Get the appropriate input based on input type"""
        if input_type == "URL":
            return url_input
        elif input_type == "PDF":
            return pdf_input
        else:  # Keyword
            return keyword_input
    
    convert_btn.click(
        fn=lambda input_type, url_input, pdf_input, keyword_input, mode, tts, lang: synthesize_sync(
            get_article_input(input_type, url_input, pdf_input, keyword_input), input_type, mode, tts, lang
        ),
        inputs=[input_type_selector, url_input, pdf_input, keyword_input, mode_selector, tts_selector, language_selector],
        outputs=[conversation_output, status_output]
    )
    
    generate_audio_btn.click(
        fn=regenerate_audio_sync,
        inputs=[conversation_output, tts_selector, language_selector],
        outputs=[status_output, audio_output]
    )


# Launch the app
if __name__ == "__main__":
    demo.queue(api_open=True, default_concurrency_limit=10).launch(
        show_api=True,
        share=False,
        server_name="0.0.0.0",
        server_port=7860
    )