Spaces:
Running
on
Zero
Running
on
Zero
File size: 87,202 Bytes
266ca46 49e7687 266ca46 49e7687 266ca46 e038f5e 266ca46 49e7687 266ca46 49e7687 266ca46 49e7687 266ca46 49e7687 266ca46 49e7687 266ca46 e038f5e 266ca46 49e7687 266ca46 49e7687 266ca46 a7f45e8 00efe1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 |
import spaces
import gradio as gr
import os
import asyncio
import torch
import io
import json
import re
import httpx
import tempfile
import wave
import base64
import numpy as np
import soundfile as sf
import subprocess
import shutil
import requests
import logging
from datetime import datetime, timedelta
from typing import List, Tuple, Dict, Optional
from pathlib import Path
from threading import Thread
from dotenv import load_dotenv
# PDF processing imports
from langchain_community.document_loaders import PyPDFLoader
# Edge TTS imports
import edge_tts
from pydub import AudioSegment
# OpenAI imports
from openai import OpenAI
# Transformers imports (for legacy local mode)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
# Llama CPP imports (for new local mode)
try:
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from huggingface_hub import hf_hub_download
LLAMA_CPP_AVAILABLE = True
except ImportError:
LLAMA_CPP_AVAILABLE = False
# Spark TTS imports
try:
from huggingface_hub import snapshot_download
SPARK_AVAILABLE = True
except:
SPARK_AVAILABLE = False
# MeloTTS imports (for local mode)
try:
# unidic 다운로드를 조건부로 처리
if not os.path.exists("/usr/local/lib/python3.10/site-packages/unidic"):
try:
os.system("python -m unidic download")
except:
pass
from melo.api import TTS as MeloTTS
MELO_AVAILABLE = True
except:
MELO_AVAILABLE = False
# Import config and prompts
from config_prompts import (
ConversationConfig,
PromptBuilder,
DefaultConversations,
EDGE_TTS_ONLY_LANGUAGES,
EDGE_TTS_VOICES
)
load_dotenv()
# Brave Search API 설정
BRAVE_KEY = os.getenv("BSEARCH_API")
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
def brave_search(query: str, count: int = 8, freshness_days: int | None = None):
"""Brave Search API를 사용하여 최신 정보 검색"""
if not BRAVE_KEY:
return []
params = {"q": query, "count": str(count)}
if freshness_days:
dt_from = (datetime.utcnow() - timedelta(days=freshness_days)).strftime("%Y-%m-%d")
params["freshness"] = dt_from
try:
r = requests.get(
BRAVE_ENDPOINT,
headers={"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY},
params=params,
timeout=15
)
raw = r.json().get("web", {}).get("results") or []
return [{
"title": r.get("title", ""),
"url": r.get("url", r.get("link", "")),
"snippet": r.get("description", r.get("text", "")),
"host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0]
} for r in raw[:count]]
except Exception as e:
logging.error(f"Brave search error: {e}")
return []
def format_search_results(query: str, for_keyword: bool = False) -> str:
"""검색 결과를 포맷팅하여 반환"""
# 키워드 검색의 경우 더 많은 결과 사용
count = 5 if for_keyword else 3
rows = brave_search(query, count, freshness_days=7 if not for_keyword else None)
if not rows:
return ""
results = []
# 키워드 검색의 경우 더 상세한 정보 포함
max_results = 4 if for_keyword else 2
for r in rows[:max_results]:
if for_keyword:
# 키워드 검색은 더 긴 스니펫 사용
snippet = r['snippet'][:200] + "..." if len(r['snippet']) > 200 else r['snippet']
results.append(f"**{r['title']}**\n{snippet}\nSource: {r['host']}")
else:
# 일반 검색은 짧은 스니펫
snippet = r['snippet'][:100] + "..." if len(r['snippet']) > 100 else r['snippet']
results.append(f"- {r['title']}: {snippet}")
return "\n\n".join(results) + "\n"
def extract_keywords_for_search(text: str, language: str = "English") -> List[str]:
"""텍스트에서 검색할 키워드 추출 (개선)"""
# 텍스트 앞부분만 사용 (너무 많은 텍스트 처리 방지)
text_sample = text[:500]
if language == "Korean":
import re
# 한국어 명사 추출 (2글자 이상)
keywords = re.findall(r'[가-힣]{2,}', text_sample)
# 중복 제거하고 가장 긴 단어 1개만 선택
unique_keywords = list(dict.fromkeys(keywords))
# 길이 순으로 정렬하고 가장 의미있을 것 같은 단어 선택
unique_keywords.sort(key=len, reverse=True)
return unique_keywords[:1] # 1개만 반환
else:
# 영어는 대문자로 시작하는 단어 중 가장 긴 것 1개
words = text_sample.split()
keywords = [word.strip('.,!?;:') for word in words
if len(word) > 4 and word[0].isupper()]
if keywords:
return [max(keywords, key=len)] # 가장 긴 단어 1개
return []
def search_and_compile_content(keyword: str, language: str = "English") -> str:
"""키워드로 검색하여 충분한 콘텐츠 컴파일"""
if not BRAVE_KEY:
# API 없을 때도 기본 콘텐츠 생성
if language == "Korean":
return f"""
'{keyword}'에 대한 종합적인 정보:
{keyword}는 현대 사회에서 매우 중요한 주제입니다.
이 주제는 다양한 측면에서 우리의 삶에 영향을 미치고 있으며,
최근 들어 더욱 주목받고 있습니다.
주요 특징:
1. 기술적 발전과 혁신
2. 사회적 영향과 변화
3. 미래 전망과 가능성
4. 실용적 활용 방안
5. 글로벌 트렌드와 동향
전문가들은 {keyword}가 앞으로 더욱 중요해질 것으로 예상하고 있으며,
이에 대한 깊이 있는 이해가 필요한 시점입니다.
"""
else:
return f"""
Comprehensive information about '{keyword}':
{keyword} is a significant topic in modern society.
This subject impacts our lives in various ways and has been
gaining increasing attention recently.
Key aspects:
1. Technological advancement and innovation
2. Social impact and changes
3. Future prospects and possibilities
4. Practical applications
5. Global trends and developments
Experts predict that {keyword} will become even more important,
and it's crucial to develop a deep understanding of this topic.
"""
# 언어에 따른 다양한 검색 쿼리
if language == "Korean":
queries = [
f"{keyword} 최신 뉴스 2024",
f"{keyword} 정보 설명",
f"{keyword} 트렌드 전망",
f"{keyword} 장점 단점",
f"{keyword} 활용 방법",
f"{keyword} 전문가 의견"
]
else:
queries = [
f"{keyword} latest news 2024",
f"{keyword} explained comprehensive",
f"{keyword} trends forecast",
f"{keyword} advantages disadvantages",
f"{keyword} how to use",
f"{keyword} expert opinions"
]
all_content = []
total_content_length = 0
for query in queries:
results = brave_search(query, count=5) # 더 많은 결과 가져오기
for r in results[:3]: # 각 쿼리당 상위 3개
content = f"**{r['title']}**\n{r['snippet']}\nSource: {r['host']}\n"
all_content.append(content)
total_content_length += len(r['snippet'])
# 콘텐츠가 부족하면 추가 생성
if total_content_length < 1000: # 최소 1000자 확보
if language == "Korean":
additional_content = f"""
추가 정보:
{keyword}와 관련된 최근 동향을 살펴보면, 이 분야는 빠르게 발전하고 있습니다.
많은 전문가들이 이 주제에 대해 활발히 연구하고 있으며,
실생활에서의 응용 가능성도 계속 확대되고 있습니다.
특히 주목할 점은:
- 기술 혁신의 가속화
- 사용자 경험의 개선
- 접근성의 향상
- 비용 효율성 증대
- 글로벌 시장의 성장
이러한 요소들이 {keyword}의 미래를 더욱 밝게 만들고 있습니다.
"""
else:
additional_content = f"""
Additional insights:
Recent developments in {keyword} show rapid advancement in this field.
Many experts are actively researching this topic, and its practical
applications continue to expand.
Key points to note:
- Accelerating technological innovation
- Improving user experience
- Enhanced accessibility
- Increased cost efficiency
- Growing global market
These factors are making the future of {keyword} increasingly promising.
"""
all_content.append(additional_content)
# 컴파일된 콘텐츠 반환
compiled = "\n\n".join(all_content)
# 키워드 기반 소개
if language == "Korean":
intro = f"### '{keyword}'에 대한 종합적인 정보와 최신 동향:\n\n"
else:
intro = f"### Comprehensive information and latest trends about '{keyword}':\n\n"
return intro + compiled
class UnifiedAudioConverter:
def __init__(self, config: ConversationConfig):
self.config = config
self.llm_client = None
self.legacy_local_model = None
self.legacy_tokenizer = None
# 새로운 로컬 LLM 관련
self.local_llm = None
self.local_llm_model = None
self.melo_models = None
self.spark_model_dir = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# 프롬프트 빌더 추가
self.prompt_builder = PromptBuilder()
def initialize_api_mode(self, api_key: str):
"""Initialize API mode with Together API"""
self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
@spaces.GPU(duration=120)
def initialize_local_mode(self):
"""Initialize new local mode with Llama CPP"""
if not LLAMA_CPP_AVAILABLE:
raise RuntimeError("Llama CPP dependencies not available. Please install llama-cpp-python and llama-cpp-agent.")
if self.local_llm is None or self.local_llm_model != self.config.local_model_name:
try:
# 모델 다운로드
model_path = hf_hub_download(
repo_id=self.config.local_model_repo,
filename=self.config.local_model_name,
local_dir="./models"
)
model_path_local = os.path.join("./models", self.config.local_model_name)
if not os.path.exists(model_path_local):
raise RuntimeError(f"Model file not found at {model_path_local}")
# Llama 모델 초기화
self.local_llm = Llama(
model_path=model_path_local,
flash_attn=True,
n_gpu_layers=81 if torch.cuda.is_available() else 0,
n_batch=1024,
n_ctx=16384,
)
self.local_llm_model = self.config.local_model_name
print(f"Local LLM initialized: {model_path_local}")
except Exception as e:
print(f"Failed to initialize local LLM: {e}")
raise RuntimeError(f"Failed to initialize local LLM: {e}")
@spaces.GPU(duration=60)
def initialize_legacy_local_mode(self):
"""Initialize legacy local mode with Hugging Face model (fallback)"""
if self.legacy_local_model is None:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
self.legacy_local_model = AutoModelForCausalLM.from_pretrained(
self.config.legacy_local_model_name,
quantization_config=quantization_config
)
self.legacy_tokenizer = AutoTokenizer.from_pretrained(
self.config.legacy_local_model_name,
revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
)
def initialize_spark_tts(self):
"""Initialize Spark TTS model by downloading if needed"""
if not SPARK_AVAILABLE:
raise RuntimeError("Spark TTS dependencies not available")
model_dir = "pretrained_models/Spark-TTS-0.5B"
# Check if model exists, if not download it
if not os.path.exists(model_dir):
print("Downloading Spark-TTS model...")
try:
os.makedirs("pretrained_models", exist_ok=True)
snapshot_download(
"SparkAudio/Spark-TTS-0.5B",
local_dir=model_dir
)
print("Spark-TTS model downloaded successfully")
except Exception as e:
raise RuntimeError(f"Failed to download Spark-TTS model: {e}")
self.spark_model_dir = model_dir
# Check if we have the CLI inference script
if not os.path.exists("cli/inference.py"):
print("Warning: Spark-TTS CLI not found. Please clone the Spark-TTS repository.")
@spaces.GPU(duration=60)
def initialize_melo_tts(self):
"""Initialize MeloTTS models"""
if MELO_AVAILABLE and self.melo_models is None:
self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}
def fetch_text(self, url: str) -> str:
"""Fetch text content from URL"""
if not url:
raise ValueError("URL cannot be empty")
if not url.startswith("http://") and not url.startswith("https://"):
raise ValueError("URL must start with 'http://' or 'https://'")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_text_from_pdf(self, pdf_file) -> str:
"""Extract text content from PDF file"""
try:
# Gradio returns file path, not file object
if isinstance(pdf_file, str):
pdf_path = pdf_file
else:
# If it's a file object (shouldn't happen with Gradio)
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file.read())
pdf_path = tmp_file.name
# PDF 로드 및 텍스트 추출
loader = PyPDFLoader(pdf_path)
pages = loader.load()
# 모든 페이지의 텍스트를 결합
text = "\n".join([page.page_content for page in pages])
# 임시 파일인 경우 삭제
if not isinstance(pdf_file, str) and os.path.exists(pdf_path):
os.unlink(pdf_path)
return text
except Exception as e:
raise RuntimeError(f"Failed to extract text from PDF: {e}")
def _get_messages_formatter_type(self, model_name):
"""Get appropriate message formatter for the model"""
if "Mistral" in model_name or "BitSix" in model_name:
return MessagesFormatterType.CHATML
else:
return MessagesFormatterType.LLAMA_3
@spaces.GPU(duration=120)
def extract_conversation_local(self, text: str, language: str = "English", progress=None) -> Dict:
"""Extract conversation using new local LLM with enhanced professional style"""
try:
# 검색 컨텍스트 생성 (키워드 기반이 아닌 경우)
search_context = ""
if BRAVE_KEY and not text.startswith("Keyword-based content:"):
try:
keywords = extract_keywords_for_search(text, language)
if keywords:
search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
search_context = format_search_results(search_query)
print(f"Search context added for: {search_query}")
except Exception as e:
print(f"Search failed, continuing without context: {e}")
# 먼저 새로운 로컬 LLM 시도
self.initialize_local_mode()
chat_template = self._get_messages_formatter_type(self.config.local_model_name)
provider = LlamaCppPythonProvider(self.local_llm)
# 언어별 시스템 메시지
system_messages = {
"Korean": (
"당신은 한국의 유명 팟캐스트 전문 작가입니다. "
"청취자들이 깊이 있는 전문 지식을 얻을 수 있는 고품질 대담을 한국어로 만듭니다. "
"반드시 서로 존댓말을 사용하며, 12회의 대화 교환으로 구성하세요. "
"모든 대화는 반드시 한국어로 작성하고 JSON 형식으로만 응답하세요."
),
"Japanese": (
"あなたは日本の有名なポッドキャスト専門作家です。"
"聴衆が深い専門知識を得られる高品質な対談を日本語で作成します。"
"必ずお互いに丁寧語を使用し、12回の対話交換で構成してください。"
"すべての対話は必ず日本語で作成し、JSON形式でのみ回答してください。"
),
"French": (
"Vous êtes un célèbre scénariste de podcast professionnel français. "
"Créez des discussions de haute qualité en français qui donnent au public "
"des connaissances professionnelles approfondies. "
"Créez exactement 12 échanges de conversation et répondez uniquement en format JSON."
),
"German": (
"Sie sind ein berühmter professioneller Podcast-Drehbuchautor aus Deutschland. "
"Erstellen Sie hochwertige Diskussionen auf Deutsch, die dem Publikum "
"tiefgreifendes Fachwissen vermitteln. "
"Erstellen Sie genau 12 Gesprächsaustausche und antworten Sie nur im JSON-Format."
),
"Spanish": (
"Eres un famoso guionista de podcast profesional español. "
"Crea discusiones de alta calidad en español que brinden al público "
"conocimientos profesionales profundos. "
"Crea exactamente 12 intercambios de conversación y responde solo en formato JSON."
),
"Chinese": (
"您是中国著名的专业播客编剧。"
"创建高质量的中文讨论,为观众提供深入的专业知识。"
"创建恰好12次对话交换,仅以JSON格式回答。"
),
"Russian": (
"Вы известный профессиональный сценарист подкастов из России. "
"Создавайте высококачественные дискуссии на русском языке, которые дают аудитории "
"глубокие профессиональные знания. "
"Создайте ровно 12 обменов разговором и отвечайте только в формате JSON."
)
}
system_message = system_messages.get(language,
f"You are a professional podcast scriptwriter creating high-quality, "
f"insightful discussions in {language}. Create exactly 12 conversation exchanges "
f"with professional expertise. All dialogue must be in {language}. "
f"Respond only in JSON format."
)
agent = LlamaCppAgent(
provider,
system_prompt=system_message,
predefined_messages_formatter_type=chat_template,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = 0.75
settings.top_k = 40
settings.top_p = 0.95
settings.max_tokens = self.config.max_tokens
settings.repeat_penalty = 1.1
settings.stream = False
messages = BasicChatHistory()
prompt = self.prompt_builder.build_prompt(text, language, search_context)
response = agent.get_chat_response(
prompt,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
print_output=False
)
# JSON 파싱
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, response)
if json_match:
conversation_data = json.loads(json_match.group())
return conversation_data
else:
raise ValueError("No valid JSON found in local LLM response")
except Exception as e:
print(f"Local LLM failed: {e}, falling back to legacy local method")
return self.extract_conversation_legacy_local(text, language, progress, search_context)
@spaces.GPU(duration=120)
def extract_conversation_legacy_local(self, text: str, language: str = "English", progress=None, search_context: str = "") -> Dict:
"""Extract conversation using legacy local model"""
try:
self.initialize_legacy_local_mode()
# 언어별 시스템 메시지는 config_prompts에서 가져옴
messages = self.prompt_builder.build_messages_for_local(text, language, search_context)
terminators = [
self.legacy_tokenizer.eos_token_id,
self.legacy_tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
chat_messages = self.legacy_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = self.legacy_tokenizer([chat_messages], return_tensors="pt").to(self.device)
streamer = TextIteratorStreamer(
self.legacy_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=self.config.max_new_tokens,
do_sample=True,
temperature=0.75,
eos_token_id=terminators,
)
t = Thread(target=self.legacy_local_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, partial_text)
if json_match:
return json.loads(json_match.group())
else:
raise ValueError("No valid JSON found in legacy local response")
except Exception as e:
print(f"Legacy local model also failed: {e}")
return DefaultConversations.get_conversation(language)
def extract_conversation_api(self, text: str, language: str = "English") -> Dict:
"""Extract conversation using API"""
if not self.llm_client:
raise RuntimeError("API mode not initialized")
try:
# 검색 컨텍스트 생성
search_context = ""
if BRAVE_KEY and not text.startswith("Keyword-based content:"):
try:
keywords = extract_keywords_for_search(text, language)
if keywords:
search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
search_context = format_search_results(search_query)
print(f"Search context added for: {search_query}")
except Exception as e:
print(f"Search failed, continuing without context: {e}")
# 메시지 빌드
messages = self.prompt_builder.build_messages_for_local(text, language, search_context)
chat_completion = self.llm_client.chat.completions.create(
messages=messages,
model=self.config.api_model_name,
temperature=0.75,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
return json.loads(json_match.group())
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {e}")
def parse_conversation_text(self, conversation_text: str) -> Dict:
"""Parse conversation text back to JSON format"""
lines = conversation_text.strip().split('\n')
conversation_data = {"conversation": []}
for line in lines:
if ':' in line:
speaker, text = line.split(':', 1)
conversation_data["conversation"].append({
"speaker": speaker.strip(),
"text": text.strip()
})
return conversation_data
async def text_to_speech_edge(self, conversation_json: Dict, language: str = "English") -> Tuple[str, str]:
"""Convert text to speech using Edge TTS"""
output_dir = Path(self._create_output_directory())
filenames = []
try:
# 언어별 음성 설정
voices = EDGE_TTS_VOICES.get(language, EDGE_TTS_VOICES["English"])
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.wav"
voice = voices[i % len(voices)]
tmp_path = await self._generate_audio_edge(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
# Combine audio files
final_output = os.path.join(output_dir, "combined_output.wav")
self._combine_audio_files(filenames, final_output)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio_edge(self, text: str, voice: str) -> str:
"""Generate audio using Edge TTS"""
if not text.strip():
raise ValueError("Text cannot be empty")
voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
communicate = edge_tts.Communicate(text, voice_short_name)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
@spaces.GPU(duration=60)
def text_to_speech_spark(self, conversation_json: Dict, language: str = "English", progress=None) -> Tuple[str, str]:
"""Convert text to speech using Spark TTS CLI"""
if not SPARK_AVAILABLE or not self.spark_model_dir:
raise RuntimeError("Spark TTS not available")
try:
output_dir = self._create_output_directory()
audio_files = []
# Create different voice characteristics for different speakers
speaker1, speaker2 = self.prompt_builder.get_speaker_names(language)
if language == "Korean":
voice_configs = [
{"prompt_text": f"안녕하세요, 오늘 팟캐스트 진행을 맡은 {speaker1}입니다.", "gender": "male"},
{"prompt_text": f"안녕하세요, 저는 오늘 이 주제에 대해 설명드릴 {speaker2}입니다.", "gender": "male"}
]
else:
voice_configs = [
{"prompt_text": f"Hello everyone, I'm {speaker1}, your host for today's podcast.", "gender": "male"},
{"prompt_text": f"Hi, I'm {speaker2}. I'm excited to share my insights with you.", "gender": "male"}
]
for i, turn in enumerate(conversation_json["conversation"]):
text = turn["text"]
if not text.strip():
continue
voice_config = voice_configs[i % len(voice_configs)]
output_file = os.path.join(output_dir, f"spark_output_{i}.wav")
cmd = [
"python", "-m", "cli.inference",
"--text", text,
"--device", "0" if torch.cuda.is_available() else "cpu",
"--save_dir", output_dir,
"--model_dir", self.spark_model_dir,
"--prompt_text", voice_config["prompt_text"],
"--output_name", f"spark_output_{i}.wav"
]
try:
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=60,
cwd="."
)
if result.returncode == 0:
audio_files.append(output_file)
else:
print(f"Spark TTS error for turn {i}: {result.stderr}")
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except subprocess.TimeoutExpired:
print(f"Spark TTS timeout for turn {i}")
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except Exception as e:
print(f"Error running Spark TTS for turn {i}: {e}")
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
# Combine all audio files
if audio_files:
final_output = os.path.join(output_dir, "spark_combined.wav")
self._combine_audio_files(audio_files, final_output)
else:
raise RuntimeError("No audio files generated")
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech with Spark TTS: {e}")
@spaces.GPU(duration=60)
def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
"""Convert text to speech using MeloTTS"""
if not MELO_AVAILABLE or not self.melo_models:
raise RuntimeError("MeloTTS not available")
speakers = ["EN-Default", "EN-US"]
combined_audio = AudioSegment.empty()
for i, turn in enumerate(conversation_json["conversation"]):
bio = io.BytesIO()
text = turn["text"]
speaker = speakers[i % 2]
speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
self.melo_models["EN"].tts_to_file(
text, speaker_id, bio, speed=1.0,
pbar=progress.tqdm if progress else None,
format="wav"
)
bio.seek(0)
audio_segment = AudioSegment.from_file(bio, format="wav")
combined_audio += audio_segment
final_audio_path = "melo_podcast.mp3"
combined_audio.export(final_audio_path, format="mp3")
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(import spaces
import gradio as gr
import os
import asyncio
import torch
import io
import json
import re
import httpx
import tempfile
import wave
import base64
import numpy as np
import soundfile as sf
import subprocess
import shutil
import requests
import logging
from datetime import datetime, timedelta
from typing import List, Tuple, Dict, Optional
from pathlib import Path
from threading import Thread
from dotenv import load_dotenv
# PDF processing imports
from langchain_community.document_loaders import PyPDFLoader
# Edge TTS imports
import edge_tts
from pydub import AudioSegment
# OpenAI imports
from openai import OpenAI
# Transformers imports (for legacy local mode)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
# Llama CPP imports (for new local mode)
try:
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from huggingface_hub import hf_hub_download
LLAMA_CPP_AVAILABLE = True
except ImportError:
LLAMA_CPP_AVAILABLE = False
# Spark TTS imports
try:
from huggingface_hub import snapshot_download
SPARK_AVAILABLE = True
except:
SPARK_AVAILABLE = False
# MeloTTS imports (for local mode)
try:
# unidic 다운로드를 조건부로 처리
if not os.path.exists("/usr/local/lib/python3.10/site-packages/unidic"):
try:
os.system("python -m unidic download")
except:
pass
from melo.api import TTS as MeloTTS
MELO_AVAILABLE = True
except:
MELO_AVAILABLE = False
# Import config and prompts
from config_prompts import (
ConversationConfig,
PromptBuilder,
DefaultConversations,
EDGE_TTS_ONLY_LANGUAGES,
EDGE_TTS_VOICES
)
load_dotenv()
# Brave Search API 설정
BRAVE_KEY = os.getenv("BSEARCH_API")
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
def brave_search(query: str, count: int = 8, freshness_days: int | None = None):
"""Brave Search API를 사용하여 최신 정보 검색"""
if not BRAVE_KEY:
return []
params = {"q": query, "count": str(count)}
if freshness_days:
dt_from = (datetime.utcnow() - timedelta(days=freshness_days)).strftime("%Y-%m-%d")
params["freshness"] = dt_from
try:
r = requests.get(
BRAVE_ENDPOINT,
headers={"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY},
params=params,
timeout=15
)
raw = r.json().get("web", {}).get("results") or []
return [{
"title": r.get("title", ""),
"url": r.get("url", r.get("link", "")),
"snippet": r.get("description", r.get("text", "")),
"host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0]
} for r in raw[:count]]
except Exception as e:
logging.error(f"Brave search error: {e}")
return []
def format_search_results(query: str, for_keyword: bool = False) -> str:
"""검색 결과를 포맷팅하여 반환"""
# 키워드 검색의 경우 더 많은 결과 사용
count = 5 if for_keyword else 3
rows = brave_search(query, count, freshness_days=7 if not for_keyword else None)
if not rows:
return ""
results = []
# 키워드 검색의 경우 더 상세한 정보 포함
max_results = 4 if for_keyword else 2
for r in rows[:max_results]:
if for_keyword:
# 키워드 검색은 더 긴 스니펫 사용
snippet = r['snippet'][:200] + "..." if len(r['snippet']) > 200 else r['snippet']
results.append(f"**{r['title']}**\n{snippet}\nSource: {r['host']}")
else:
# 일반 검색은 짧은 스니펫
snippet = r['snippet'][:100] + "..." if len(r['snippet']) > 100 else r['snippet']
results.append(f"- {r['title']}: {snippet}")
return "\n\n".join(results) + "\n"
def extract_keywords_for_search(text: str, language: str = "English") -> List[str]:
"""텍스트에서 검색할 키워드 추출 (개선)"""
# 텍스트 앞부분만 사용 (너무 많은 텍스트 처리 방지)
text_sample = text[:500]
if language == "Korean":
import re
# 한국어 명사 추출 (2글자 이상)
keywords = re.findall(r'[가-힣]{2,}', text_sample)
# 중복 제거하고 가장 긴 단어 1개만 선택
unique_keywords = list(dict.fromkeys(keywords))
# 길이 순으로 정렬하고 가장 의미있을 것 같은 단어 선택
unique_keywords.sort(key=len, reverse=True)
return unique_keywords[:1] # 1개만 반환
else:
# 영어는 대문자로 시작하는 단어 중 가장 긴 것 1개
words = text_sample.split()
keywords = [word.strip('.,!?;:') for word in words
if len(word) > 4 and word[0].isupper()]
if keywords:
return [max(keywords, key=len)] # 가장 긴 단어 1개
return []
def search_and_compile_content(keyword: str, language: str = "English") -> str:
"""키워드로 검색하여 충분한 콘텐츠 컴파일"""
if not BRAVE_KEY:
# API 없을 때도 기본 콘텐츠 생성
if language == "Korean":
return f"""
'{keyword}'에 대한 종합적인 정보:
{keyword}는 현대 사회에서 매우 중요한 주제입니다.
이 주제는 다양한 측면에서 우리의 삶에 영향을 미치고 있으며,
최근 들어 더욱 주목받고 있습니다.
주요 특징:
1. 기술적 발전과 혁신
2. 사회적 영향과 변화
3. 미래 전망과 가능성
4. 실용적 활용 방안
5. 글로벌 트렌드와 동향
전문가들은 {keyword}가 앞으로 더욱 중요해질 것으로 예상하고 있으며,
이에 대한 깊이 있는 이해가 필요한 시점입니다.
"""
else:
return f"""
Comprehensive information about '{keyword}':
{keyword} is a significant topic in modern society.
This subject impacts our lives in various ways and has been
gaining increasing attention recently.
Key aspects:
1. Technological advancement and innovation
2. Social impact and changes
3. Future prospects and possibilities
4. Practical applications
5. Global trends and developments
Experts predict that {keyword} will become even more important,
and it's crucial to develop a deep understanding of this topic.
"""
# 언어에 따른 다양한 검색 쿼리
if language == "Korean":
queries = [
f"{keyword} 최신 뉴스 2024",
f"{keyword} 정보 설명",
f"{keyword} 트렌드 전망",
f"{keyword} 장점 단점",
f"{keyword} 활용 방법",
f"{keyword} 전문가 의견"
]
else:
queries = [
f"{keyword} latest news 2024",
f"{keyword} explained comprehensive",
f"{keyword} trends forecast",
f"{keyword} advantages disadvantages",
f"{keyword} how to use",
f"{keyword} expert opinions"
]
all_content = []
total_content_length = 0
for query in queries:
results = brave_search(query, count=5) # 더 많은 결과 가져오기
for r in results[:3]: # 각 쿼리당 상위 3개
content = f"**{r['title']}**\n{r['snippet']}\nSource: {r['host']}\n"
all_content.append(content)
total_content_length += len(r['snippet'])
# 콘텐츠가 부족하면 추가 생성
if total_content_length < 1000: # 최소 1000자 확보
if language == "Korean":
additional_content = f"""
추가 정보:
{keyword}와 관련된 최근 동향을 살펴보면, 이 분야는 빠르게 발전하고 있습니다.
많은 전문가들이 이 주제에 대해 활발히 연구하고 있으며,
실생활에서의 응용 가능성도 계속 확대되고 있습니다.
특히 주목할 점은:
- 기술 혁신의 가속화
- 사용자 경험의 개선
- 접근성의 향상
- 비용 효율성 증대
- 글로벌 시장의 성장
이러한 요소들이 {keyword}의 미래를 더욱 밝게 만들고 있습니다.
"""
else:
additional_content = f"""
Additional insights:
Recent developments in {keyword} show rapid advancement in this field.
Many experts are actively researching this topic, and its practical
applications continue to expand.
Key points to note:
- Accelerating technological innovation
- Improving user experience
- Enhanced accessibility
- Increased cost efficiency
- Growing global market
These factors are making the future of {keyword} increasingly promising.
"""
all_content.append(additional_content)
# 컴파일된 콘텐츠 반환
compiled = "\n\n".join(all_content)
# 키워드 기반 소개
if language == "Korean":
intro = f"### '{keyword}'에 대한 종합적인 정보와 최신 동향:\n\n"
else:
intro = f"### Comprehensive information and latest trends about '{keyword}':\n\n"
return intro + compiled
class UnifiedAudioConverter:
def __init__(self, config: ConversationConfig):
self.config = config
self.llm_client = None
self.legacy_local_model = None
self.legacy_tokenizer = None
# 새로운 로컬 LLM 관련
self.local_llm = None
self.local_llm_model = None
self.melo_models = None
self.spark_model_dir = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# 프롬프트 빌더 추가
self.prompt_builder = PromptBuilder()
def initialize_api_mode(self, api_key: str):
"""Initialize API mode with Together API"""
self.llm_client = OpenAI(api_key=api_key, base_url="https://api.together.xyz/v1")
@spaces.GPU(duration=120)
def initialize_local_mode(self):
"""Initialize new local mode with Llama CPP"""
if not LLAMA_CPP_AVAILABLE:
raise RuntimeError("Llama CPP dependencies not available. Please install llama-cpp-python and llama-cpp-agent.")
if self.local_llm is None or self.local_llm_model != self.config.local_model_name:
try:
# 모델 다운로드
model_path = hf_hub_download(
repo_id=self.config.local_model_repo,
filename=self.config.local_model_name,
local_dir="./models"
)
model_path_local = os.path.join("./models", self.config.local_model_name)
if not os.path.exists(model_path_local):
raise RuntimeError(f"Model file not found at {model_path_local}")
# Llama 모델 초기화
self.local_llm = Llama(
model_path=model_path_local,
flash_attn=True,
n_gpu_layers=81 if torch.cuda.is_available() else 0,
n_batch=1024,
n_ctx=16384,
)
self.local_llm_model = self.config.local_model_name
print(f"Local LLM initialized: {model_path_local}")
except Exception as e:
print(f"Failed to initialize local LLM: {e}")
raise RuntimeError(f"Failed to initialize local LLM: {e}")
@spaces.GPU(duration=60)
def initialize_legacy_local_mode(self):
"""Initialize legacy local mode with Hugging Face model (fallback)"""
if self.legacy_local_model is None:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
self.legacy_local_model = AutoModelForCausalLM.from_pretrained(
self.config.legacy_local_model_name,
quantization_config=quantization_config
)
self.legacy_tokenizer = AutoTokenizer.from_pretrained(
self.config.legacy_local_model_name,
revision='8ab73a6800796d84448bc936db9bac5ad9f984ae'
)
def initialize_spark_tts(self):
"""Initialize Spark TTS model by downloading if needed"""
if not SPARK_AVAILABLE:
raise RuntimeError("Spark TTS dependencies not available")
model_dir = "pretrained_models/Spark-TTS-0.5B"
# Check if model exists, if not download it
if not os.path.exists(model_dir):
print("Downloading Spark-TTS model...")
try:
os.makedirs("pretrained_models", exist_ok=True)
snapshot_download(
"SparkAudio/Spark-TTS-0.5B",
local_dir=model_dir
)
print("Spark-TTS model downloaded successfully")
except Exception as e:
raise RuntimeError(f"Failed to download Spark-TTS model: {e}")
self.spark_model_dir = model_dir
# Check if we have the CLI inference script
if not os.path.exists("cli/inference.py"):
print("Warning: Spark-TTS CLI not found. Please clone the Spark-TTS repository.")
@spaces.GPU(duration=60)
def initialize_melo_tts(self):
"""Initialize MeloTTS models"""
if MELO_AVAILABLE and self.melo_models is None:
self.melo_models = {"EN": MeloTTS(language="EN", device=self.device)}
def fetch_text(self, url: str) -> str:
"""Fetch text content from URL"""
if not url:
raise ValueError("URL cannot be empty")
if not url.startswith("http://") and not url.startswith("https://"):
raise ValueError("URL must start with 'http://' or 'https://'")
full_url = f"{self.config.prefix_url}{url}"
try:
response = httpx.get(full_url, timeout=60.0)
response.raise_for_status()
return response.text
except httpx.HTTPError as e:
raise RuntimeError(f"Failed to fetch URL: {e}")
def extract_text_from_pdf(self, pdf_file) -> str:
"""Extract text content from PDF file"""
try:
# Gradio returns file path, not file object
if isinstance(pdf_file, str):
pdf_path = pdf_file
else:
# If it's a file object (shouldn't happen with Gradio)
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file.read())
pdf_path = tmp_file.name
# PDF 로드 및 텍스트 추출
loader = PyPDFLoader(pdf_path)
pages = loader.load()
# 모든 페이지의 텍스트를 결합
text = "\n".join([page.page_content for page in pages])
# 임시 파일인 경우 삭제
if not isinstance(pdf_file, str) and os.path.exists(pdf_path):
os.unlink(pdf_path)
return text
except Exception as e:
raise RuntimeError(f"Failed to extract text from PDF: {e}")
def _get_messages_formatter_type(self, model_name):
"""Get appropriate message formatter for the model"""
if "Mistral" in model_name or "BitSix" in model_name:
return MessagesFormatterType.CHATML
else:
return MessagesFormatterType.LLAMA_3
@spaces.GPU(duration=120)
def extract_conversation_local(self, text: str, language: str = "English", progress=None) -> Dict:
"""Extract conversation using new local LLM with enhanced professional style"""
try:
# 검색 컨텍스트 생성 (키워드 기반이 아닌 경우)
search_context = ""
if BRAVE_KEY and not text.startswith("Keyword-based content:"):
try:
keywords = extract_keywords_for_search(text, language)
if keywords:
search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
search_context = format_search_results(search_query)
print(f"Search context added for: {search_query}")
except Exception as e:
print(f"Search failed, continuing without context: {e}")
# 먼저 새로운 로컬 LLM 시도
self.initialize_local_mode()
chat_template = self._get_messages_formatter_type(self.config.local_model_name)
provider = LlamaCppPythonProvider(self.local_llm)
# 언어별 시스템 메시지
system_messages = {
"Korean": (
"당신은 한국의 유명 팟캐스트 전문 작가입니다. "
"청취자들이 깊이 있는 전문 지식을 얻을 수 있는 고품질 대담을 한국어로 만듭니다. "
"반드시 서로 존댓말을 사용하며, 12회의 대화 교환으로 구성하세요. "
"모든 대화는 반드시 한국어로 작성하고 JSON 형식으로만 응답하세요."
),
"Japanese": (
"あなたは日本の有名なポッドキャスト専門作家です。"
"聴衆が深い専門知識を得られる高品質な対談を日本語で作成します。"
"必ずお互いに丁寧語を使用し、12回の対話交換で構成してください。"
"すべての対話は必ず日本語で作成し、JSON形式でのみ回答してください。"
),
"French": (
"Vous êtes un célèbre scénariste de podcast professionnel français. "
"Créez des discussions de haute qualité en français qui donnent au public "
"des connaissances professionnelles approfondies. "
"Créez exactement 12 échanges de conversation et répondez uniquement en format JSON."
),
"German": (
"Sie sind ein berühmter professioneller Podcast-Drehbuchautor aus Deutschland. "
"Erstellen Sie hochwertige Diskussionen auf Deutsch, die dem Publikum "
"tiefgreifendes Fachwissen vermitteln. "
"Erstellen Sie genau 12 Gesprächsaustausche und antworten Sie nur im JSON-Format."
),
"Spanish": (
"Eres un famoso guionista de podcast profesional español. "
"Crea discusiones de alta calidad en español que brinden al público "
"conocimientos profesionales profundos. "
"Crea exactamente 12 intercambios de conversación y responde solo en formato JSON."
),
"Chinese": (
"您是中国著名的专业播客编剧。"
"创建高质量的中文讨论,为观众提供深入的专业知识。"
"创建恰好12次对话交换,仅以JSON格式回答。"
),
"Russian": (
"Вы известный профессиональный сценарист подкастов из России. "
"Создавайте высококачественные дискуссии на русском языке, которые дают аудитории "
"глубокие профессиональные знания. "
"Создайте ровно 12 обменов разговором и отвечайте только в формате JSON."
)
}
system_message = system_messages.get(language,
f"You are a professional podcast scriptwriter creating high-quality, "
f"insightful discussions in {language}. Create exactly 12 conversation exchanges "
f"with professional expertise. All dialogue must be in {language}. "
f"Respond only in JSON format."
)
agent = LlamaCppAgent(
provider,
system_prompt=system_message,
predefined_messages_formatter_type=chat_template,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = 0.75
settings.top_k = 40
settings.top_p = 0.95
settings.max_tokens = self.config.max_tokens
settings.repeat_penalty = 1.1
settings.stream = False
messages = BasicChatHistory()
prompt = self.prompt_builder.build_prompt(text, language, search_context)
response = agent.get_chat_response(
prompt,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
print_output=False
)
# JSON 파싱
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, response)
if json_match:
conversation_data = json.loads(json_match.group())
return conversation_data
else:
raise ValueError("No valid JSON found in local LLM response")
except Exception as e:
print(f"Local LLM failed: {e}, falling back to legacy local method")
return self.extract_conversation_legacy_local(text, language, progress, search_context)
@spaces.GPU(duration=120)
def extract_conversation_legacy_local(self, text: str, language: str = "English", progress=None, search_context: str = "") -> Dict:
"""Extract conversation using legacy local model"""
try:
self.initialize_legacy_local_mode()
# 언어별 시스템 메시지는 config_prompts에서 가져옴
messages = self.prompt_builder.build_messages_for_local(text, language, search_context)
terminators = [
self.legacy_tokenizer.eos_token_id,
self.legacy_tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
chat_messages = self.legacy_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = self.legacy_tokenizer([chat_messages], return_tensors="pt").to(self.device)
streamer = TextIteratorStreamer(
self.legacy_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=self.config.max_new_tokens,
do_sample=True,
temperature=0.75,
eos_token_id=terminators,
)
t = Thread(target=self.legacy_local_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, partial_text)
if json_match:
return json.loads(json_match.group())
else:
raise ValueError("No valid JSON found in legacy local response")
except Exception as e:
print(f"Legacy local model also failed: {e}")
return DefaultConversations.get_conversation(language)
def extract_conversation_api(self, text: str, language: str = "English") -> Dict:
"""Extract conversation using API"""
if not self.llm_client:
raise RuntimeError("API mode not initialized")
try:
# 검색 컨텍스트 생성
search_context = ""
if BRAVE_KEY and not text.startswith("Keyword-based content:"):
try:
keywords = extract_keywords_for_search(text, language)
if keywords:
search_query = keywords[0] if language == "Korean" else f"{keywords[0]} latest news"
search_context = format_search_results(search_query)
print(f"Search context added for: {search_query}")
except Exception as e:
print(f"Search failed, continuing without context: {e}")
# 메시지 빌드
messages = self.prompt_builder.build_messages_for_local(text, language, search_context)
chat_completion = self.llm_client.chat.completions.create(
messages=messages,
model=self.config.api_model_name,
temperature=0.75,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
return json.loads(json_match.group())
except Exception as e:
raise RuntimeError(f"Failed to extract conversation: {e}")
def parse_conversation_text(self, conversation_text: str) -> Dict:
"""Parse conversation text back to JSON format"""
lines = conversation_text.strip().split('\n')
conversation_data = {"conversation": []}
for line in lines:
if ':' in line:
speaker, text = line.split(':', 1)
conversation_data["conversation"].append({
"speaker": speaker.strip(),
"text": text.strip()
})
return conversation_data
async def text_to_speech_edge(self, conversation_json: Dict, language: str = "English") -> Tuple[str, str]:
"""Convert text to speech using Edge TTS"""
output_dir = Path(self._create_output_directory())
filenames = []
try:
# 언어별 음성 설정
voices = EDGE_TTS_VOICES.get(language, EDGE_TTS_VOICES["English"])
for i, turn in enumerate(conversation_json["conversation"]):
filename = output_dir / f"output_{i}.wav"
voice = voices[i % len(voices)]
tmp_path = await self._generate_audio_edge(turn["text"], voice)
os.rename(tmp_path, filename)
filenames.append(str(filename))
# Combine audio files
final_output = os.path.join(output_dir, "combined_output.wav")
self._combine_audio_files(filenames, final_output)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech: {e}")
async def _generate_audio_edge(self, text: str, voice: str) -> str:
"""Generate audio using Edge TTS"""
if not text.strip():
raise ValueError("Text cannot be empty")
voice_short_name = voice.split(" - ")[0] if " - " in voice else voice
communicate = edge_tts.Communicate(text, voice_short_name)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
@spaces.GPU(duration=60)
def text_to_speech_spark(self, conversation_json: Dict, language: str = "English", progress=None) -> Tuple[str, str]:
"""Convert text to speech using Spark TTS CLI"""
if not SPARK_AVAILABLE or not self.spark_model_dir:
raise RuntimeError("Spark TTS not available")
try:
output_dir = self._create_output_directory()
audio_files = []
# Create different voice characteristics for different speakers
speaker1, speaker2 = self.prompt_builder.get_speaker_names(language)
if language == "Korean":
voice_configs = [
{"prompt_text": f"안녕하세요, 오늘 팟캐스트 진행을 맡은 {speaker1}입니다.", "gender": "male"},
{"prompt_text": f"안녕하세요, 저는 오늘 이 주제에 대해 설명드릴 {speaker2}입니다.", "gender": "male"}
]
else:
voice_configs = [
{"prompt_text": f"Hello everyone, I'm {speaker1}, your host for today's podcast.", "gender": "male"},
{"prompt_text": f"Hi, I'm {speaker2}. I'm excited to share my insights with you.", "gender": "male"}
]
for i, turn in enumerate(conversation_json["conversation"]):
text = turn["text"]
if not text.strip():
continue
voice_config = voice_configs[i % len(voice_configs)]
output_file = os.path.join(output_dir, f"spark_output_{i}.wav")
cmd = [
"python", "-m", "cli.inference",
"--text", text,
"--device", "0" if torch.cuda.is_available() else "cpu",
"--save_dir", output_dir,
"--model_dir", self.spark_model_dir,
"--prompt_text", voice_config["prompt_text"],
"--output_name", f"spark_output_{i}.wav"
]
try:
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=60,
cwd="."
)
if result.returncode == 0:
audio_files.append(output_file)
else:
print(f"Spark TTS error for turn {i}: {result.stderr}")
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except subprocess.TimeoutExpired:
print(f"Spark TTS timeout for turn {i}")
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
except Exception as e:
print(f"Error running Spark TTS for turn {i}: {e}")
silence = np.zeros(int(22050 * 1.0))
sf.write(output_file, silence, 22050)
audio_files.append(output_file)
# Combine all audio files
if audio_files:
final_output = os.path.join(output_dir, "spark_combined.wav")
self._combine_audio_files(audio_files, final_output)
else:
raise RuntimeError("No audio files generated")
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return final_output, conversation_text
except Exception as e:
raise RuntimeError(f"Failed to convert text to speech with Spark TTS: {e}")
@spaces.GPU(duration=60)
def text_to_speech_melo(self, conversation_json: Dict, progress=None) -> Tuple[str, str]:
"""Convert text to speech using MeloTTS"""
if not MELO_AVAILABLE or not self.melo_models:
raise RuntimeError("MeloTTS not available")
speakers = ["EN-Default", "EN-US"]
combined_audio = AudioSegment.empty()
for i, turn in enumerate(conversation_json["conversation"]):
bio = io.BytesIO()
text = turn["text"]
speaker = speakers[i % 2]
speaker_id = self.melo_models["EN"].hps.data.spk2id[speaker]
self.melo_models["EN"].tts_to_file(
text, speaker_id, bio, speed=1.0,
pbar=progress.tqdm if progress else None,
format="wav"
)
bio.seek(0)
audio_segment = AudioSegment.from_file(bio, format="wav")
combined_audio += audio_segment
final_audio_path = "melo_podcast.mp3"
combined_audio.export(final_audio_path, format="mp3")
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(
conversation_json["conversation"])
)
return final_audio_path, conversation_text
def _create_output_directory(self) -> str:
"""Create a unique output directory"""
random_bytes = os.urandom(8)
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
os.makedirs(folder_name, exist_ok=True)
return folder_name
def _combine_audio_files(self, filenames: List[str], output_file: str) -> None:
"""Combine multiple audio files into one"""
if not filenames:
raise ValueError("No input files provided")
try:
audio_segments = []
for filename in filenames:
if os.path.exists(filename):
audio_segment = AudioSegment.from_file(filename)
audio_segments.append(audio_segment)
if audio_segments:
combined = sum(audio_segments)
combined.export(output_file, format="wav")
# Clean up temporary files
for filename in filenames:
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
raise RuntimeError(f"Failed to combine audio files: {e}")
# Global converter instance
converter = UnifiedAudioConverter(ConversationConfig())
async def synthesize(article_input, input_type: str = "URL", mode: str = "Local", tts_engine: str = "Edge-TTS", language: str = "English"):
"""Main synthesis function - handles URL, PDF, and Keyword inputs"""
try:
# Extract text based on input type
if input_type == "URL":
if not article_input or not isinstance(article_input, str):
return "Please provide a valid URL.", None
text = converter.fetch_text(article_input)
elif input_type == "PDF":
if not article_input:
return "Please upload a PDF file.", None
text = converter.extract_text_from_pdf(article_input)
else: # Keyword
if not article_input or not isinstance(article_input, str):
return "Please provide a keyword or topic.", None
text = search_and_compile_content(article_input, language)
text = f"Keyword-based content:\n{text}"
# Limit text to max words
words = text.split()
if len(words) > converter.config.max_words:
text = " ".join(words[:converter.config.max_words])
# Extract conversation based on mode
if mode == "Local":
try:
conversation_json = converter.extract_conversation_local(text, language)
except Exception as e:
print(f"Local mode failed: {e}, trying API fallback")
api_key = os.environ.get("TOGETHER_API_KEY")
if api_key:
converter.initialize_api_mode(api_key)
conversation_json = converter.extract_conversation_api(text, language)
else:
raise RuntimeError("Local mode failed and no API key available for fallback")
else: # API mode
api_key = os.environ.get("TOGETHER_API_KEY")
if not api_key:
print("API key not found, falling back to local mode")
conversation_json = converter.extract_conversation_local(text, language)
else:
try:
converter.initialize_api_mode(api_key)
conversation_json = converter.extract_conversation_api(text, language)
except Exception as e:
print(f"API mode failed: {e}, falling back to local mode")
conversation_json = converter.extract_conversation_local(text, language)
# Generate conversation text
conversation_text = "\n".join(
f"{turn.get('speaker', f'Speaker {i+1}')}: {turn['text']}"
for i, turn in enumerate(conversation_json["conversation"])
)
return conversation_text, None
except Exception as e:
return f"Error: {str(e)}", None
async def regenerate_audio(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
"""Regenerate audio from edited conversation text"""
if not conversation_text.strip():
return "Please provide conversation text.", None
try:
conversation_json = converter.parse_conversation_text(conversation_text)
if not conversation_json["conversation"]:
return "No valid conversation found in the text.", None
# Edge TTS 전용 언어는 자동으로 Edge-TTS 사용
if language in EDGE_TTS_ONLY_LANGUAGES and tts_engine != "Edge-TTS":
tts_engine = "Edge-TTS"
# Generate audio based on TTS engine
if tts_engine == "Edge-TTS":
output_file, _ = await converter.text_to_speech_edge(conversation_json, language)
elif tts_engine == "Spark-TTS":
if not SPARK_AVAILABLE:
return "Spark TTS not available. Please install required dependencies and clone the Spark-TTS repository.", None
converter.initialize_spark_tts()
output_file, _ = converter.text_to_speech_spark(conversation_json, language)
else: # MeloTTS
if not MELO_AVAILABLE:
return "MeloTTS not available. Please install required dependencies.", None
if language in EDGE_TTS_ONLY_LANGUAGES:
return f"MeloTTS does not support {language}. Please use Edge-TTS for this language.", None
converter.initialize_melo_tts()
output_file, _ = converter.text_to_speech_melo(conversation_json)
return "Audio generated successfully!", output_file
except Exception as e:
return f"Error generating audio: {str(e)}", None
def synthesize_sync(article_input, input_type: str = "URL", mode: str = "Local", tts_engine: str = "Edge-TTS", language: str = "English"):
"""Synchronous wrapper for async synthesis"""
return asyncio.run(synthesize(article_input, input_type, mode, tts_engine, language))
def regenerate_audio_sync(conversation_text: str, tts_engine: str = "Edge-TTS", language: str = "English"):
"""Synchronous wrapper for async audio regeneration"""
return asyncio.run(regenerate_audio(conversation_text, tts_engine, language))
def update_tts_engine_for_language(language):
"""언어별 TTS 엔진 옵션 업데이트"""
if language in EDGE_TTS_ONLY_LANGUAGES:
language_info = {
"Korean": "한국어는 Edge-TTS만 지원됩니다",
"Japanese": "日本語はEdge-TTSのみサポートされています",
"French": "Le français n'est pris en charge que par Edge-TTS",
"German": "Deutsch wird nur von Edge-TTS unterstützt",
"Spanish": "El español solo es compatible con Edge-TTS",
"Italian": "L'italiano è supportato solo da Edge-TTS",
"Portuguese": "O português é suportado apenas pelo Edge-TTS",
"Dutch": "Nederlands wordt alleen ondersteund door Edge-TTS",
"Thai": "ภาษาไทยรองรับเฉพาะ Edge-TTS เท่านั้น",
"Vietnamese": "Tiếng Việt chỉ được hỗ trợ bởi Edge-TTS",
"Arabic": "العربية مدعومة فقط من Edge-TTS",
"Hebrew": "עברית נתמכת רק על ידי Edge-TTS",
"Indonesian": "Bahasa Indonesia hanya didukung oleh Edge-TTS",
"Hindi": "हिंदी केवल Edge-TTS द्वारा समर्थित है",
"Russian": "Русский поддерживается только Edge-TTS",
"Chinese": "中文仅支持Edge-TTS"
}
info_text = language_info.get(language, f"{language} is only supported by Edge-TTS")
return gr.Radio(
choices=["Edge-TTS"],
value="Edge-TTS",
label="TTS Engine",
info=info_text,
interactive=False
)
else:
return gr.Radio(
choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
value="Edge-TTS",
label="TTS Engine",
info="Edge-TTS: Cloud-based, natural voices | Spark-TTS: Local AI model | MeloTTS: Local, requires GPU",
interactive=True
)
def toggle_input_visibility(input_type):
"""Toggle visibility of URL input, file upload, and keyword input based on input type"""
if input_type == "URL":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif input_type == "PDF":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else: # Keyword
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
# 모델 초기화 (앱 시작 시)
if LLAMA_CPP_AVAILABLE:
try:
model_path = hf_hub_download(
repo_id=converter.config.local_model_repo,
filename=converter.config.local_model_name,
local_dir="./models"
)
print(f"Model downloaded to: {model_path}")
except Exception as e:
print(f"Failed to download model at startup: {e}")
# Gradio Interface - 개선된 다국어 레이아웃
with gr.Blocks(theme='soft', title="AI Podcast Generator", css="""
.container {max-width: 1200px; margin: auto; padding: 20px;}
.header-text {text-align: center; margin-bottom: 30px;}
.input-group {background: #f7f7f7; padding: 20px; border-radius: 10px; margin-bottom: 20px;}
.output-group {background: #f0f0f0; padding: 20px; border-radius: 10px;}
.status-box {background: #e8f4f8; padding: 15px; border-radius: 8px; margin-top: 10px;}
""") as demo:
with gr.Column(elem_classes="container"):
# 헤더
with gr.Row(elem_classes="header-text"):
gr.Markdown("""
# 🎙️ AI Podcast Generator - Professional Multi-Language Edition
### Convert any article, blog, PDF document, or topic into an engaging professional podcast conversation in 24+ languages!
""")
with gr.Row(elem_classes="discord-badge"):
gr.HTML("""
<p style="text-align: center;">
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="badge">
</a>
</p>
""")
# 상태 표시 섹션
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"""
#### 🤖 System Status
- **LLM**: {converter.config.local_model_name.split('.')[0]}
- **Fallback**: {converter.config.api_model_name.split('/')[-1]}
- **Llama CPP**: {"✅ Ready" if LLAMA_CPP_AVAILABLE else "❌ Not Available"}
- **Search**: {"✅ Brave API" if BRAVE_KEY else "❌ No API"}
""")
with gr.Column(scale=1):
gr.Markdown("""
#### 🌍 Multi-Language Support
- **24+ Languages**: Korean, Japanese, French, German, Spanish, Italian, etc.
- **Native Voices**: Optimized for each language
- **Professional Style**: Expert discussions with data & insights
- **Auto-TTS Selection**: Best engine per language
""")
# 메인 입력 섹션
with gr.Group(elem_classes="input-group"):
with gr.Row():
# 왼쪽: 입력 옵션들
with gr.Column(scale=2):
# 입력 타입 선택
input_type_selector = gr.Radio(
choices=["URL", "PDF", "Keyword"],
value="URL",
label="📥 Input Type",
info="Choose your content source"
)
# URL 입력
url_input = gr.Textbox(
label="🔗 Article URL",
placeholder="Enter the article URL here...",
value="",
visible=True,
lines=2
)
# PDF 업로드
pdf_input = gr.File(
label="📄 Upload PDF",
file_types=[".pdf"],
visible=False
)
# 키워드 입력
keyword_input = gr.Textbox(
label="🔍 Topic/Keyword",
placeholder="Enter a topic (e.g., 'AI trends 2024', '인공지능', 'IA tendances', 'KI Trends')",
value="",
visible=False,
info="System will search and compile latest information",
lines=2
)
# 오른쪽: 설정 옵션들
with gr.Column(scale=1):
# 언어 선택
language_selector = gr.Radio(
choices=[
"English", "Korean", "Japanese", "French", "German",
"Spanish", "Italian", "Portuguese", "Dutch", "Thai",
"Vietnamese", "Arabic", "Hebrew", "Indonesian", "Hindi",
"Russian", "Chinese", "Norwegian", "Swedish", "Finnish",
"Danish", "Polish", "Turkish", "Greek", "Czech"
],
value="English",
label="🌐 Language / 언어 / 语言",
info="Select podcast language"
)
# 처리 모드
mode_selector = gr.Radio(
choices=["Local", "API"],
value="Local",
label="⚙️ Processing Mode",
info="Local: On-device | API: Cloud"
)
# TTS 엔진
tts_selector = gr.Radio(
choices=["Edge-TTS", "Spark-TTS", "MeloTTS"],
value="Edge-TTS",
label="🔊 TTS Engine",
info="Voice synthesis engine"
)
# 생성 버튼
with gr.Row():
convert_btn = gr.Button(
"🎯 Generate Professional Conversation",
variant="primary",
size="lg",
scale=1
)
# 출력 섹션
with gr.Group(elem_classes="output-group"):
with gr.Row():
# 왼쪽: 대화 텍스트
with gr.Column(scale=3):
conversation_output = gr.Textbox(
label="💬 Generated Professional Conversation (Editable)",
lines=25,
max_lines=50,
interactive=True,
placeholder="Professional podcast conversation will appear here...\n전문 팟캐스트 대화가 여기에 표시됩니다...\nLa conversation professionnelle du podcast apparaîtra ici...",
info="Edit the conversation as needed. Format: 'Speaker Name: Text'"
)
# 오디오 생성 버튼
with gr.Row():
generate_audio_btn = gr.Button(
"🎙️ Generate Audio from Text",
variant="secondary",
size="lg"
)
# 오른쪽: 오디오 출력 및 상태
with gr.Column(scale=2):
audio_output = gr.Audio(
label="🎧 Professional Podcast Audio",
type="filepath",
interactive=False
)
status_output = gr.Textbox(
label="📊 Status",
interactive=False,
lines=3,
elem_classes="status-box"
)
# 도움말
gr.Markdown("""
#### 💡 Quick Tips:
- **URL**: Paste any article link
- **PDF**: Upload documents directly
- **Keyword**: Enter topics for AI research
- **24+ Languages** fully supported
- Edit conversation before audio generation
- Auto TTS engine selection per language
""")
# 예제 섹션
with gr.Accordion("📚 Multi-Language Examples", open=False):
gr.Examples(
examples=[
["https://huggingface.co/blog/openfreeai/cycle-navigator", "URL", "Local", "Edge-TTS", "English"],
["quantum computing breakthroughs", "Keyword", "Local", "Edge-TTS", "English"],
["인공지능 윤리와 규제", "Keyword", "Local", "Edge-TTS", "Korean"],
["https://huggingface.co/papers/2505.14810", "URL", "Local", "Edge-TTS", "Japanese"],
["intelligence artificielle tendances", "Keyword", "Local", "Edge-TTS", "French"],
["künstliche intelligenz entwicklung", "Keyword", "Local", "Edge-TTS", "German"],
["inteligencia artificial avances", "Keyword", "Local", "Edge-TTS", "Spanish"],
],
inputs=[url_input, input_type_selector, mode_selector, tts_selector, language_selector],
outputs=[conversation_output, status_output],
fn=synthesize_sync,
cache_examples=False,
)
# Input type change handler
input_type_selector.change(
fn=toggle_input_visibility,
inputs=[input_type_selector],
outputs=[url_input, pdf_input, keyword_input]
)
# 언어 변경 시 TTS 엔진 옵션 업데이트
language_selector.change(
fn=update_tts_engine_for_language,
inputs=[language_selector],
outputs=[tts_selector]
)
# 이벤트 연결
def get_article_input(input_type, url_input, pdf_input, keyword_input):
"""Get the appropriate input based on input type"""
if input_type == "URL":
return url_input
elif input_type == "PDF":
return pdf_input
else: # Keyword
return keyword_input
convert_btn.click(
fn=lambda input_type, url_input, pdf_input, keyword_input, mode, tts, lang: synthesize_sync(
get_article_input(input_type, url_input, pdf_input, keyword_input), input_type, mode, tts, lang
),
inputs=[input_type_selector, url_input, pdf_input, keyword_input, mode_selector, tts_selector, language_selector],
outputs=[conversation_output, status_output]
)
generate_audio_btn.click(
fn=regenerate_audio_sync,
inputs=[conversation_output, tts_selector, language_selector],
outputs=[status_output, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue(api_open=True, default_concurrency_limit=10).launch(
show_api=True,
share=False,
server_name="0.0.0.0",
server_port=7860
) |