File size: 19,731 Bytes
488dc3e
 
 
1bbca12
 
 
488dc3e
 
 
 
 
 
 
 
 
 
1bbca12
488dc3e
 
 
 
 
 
 
 
 
1bbca12
 
 
 
488dc3e
 
1bbca12
 
 
488dc3e
1bbca12
488dc3e
 
 
 
 
 
 
 
 
1bbca12
488dc3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bbca12
 
 
488dc3e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
import gradio as gr
import requests
import aiohttp
import asyncio
import json
import nest_asyncio
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_huggingface import HuggingFacePipeline
from transformers import pipeline
from langchain_core.messages import SystemMessage, HumanMessage
from tools import search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool, calculator_tool, document_retriever_tool
from tools.search import initialize_search_tools
from state import JARVISState
import pandas as pd
from dotenv import load_dotenv
import logging
from langfuse.callback import CallbackHandler

# Set up logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Apply nest_asyncio
nest_asyncio.apply()

# Load environment variables
load_dotenv()

# Verify environment variables
required_env_vars = ["SPACE_ID", "LANGFUSE_PUBLIC_KEY", "LANGFUSE_SECRET_KEY"]
for var in required_env_vars:
    if not os.getenv(var):
        raise ValueError(f"Environment variable {var} is not set")
logger.info(f"Environment variables loaded: SPACE_ID={os.getenv('SPACE_ID')[:10]}..., LANGFUSE_HOST={os.getenv('LANGFUSE_HOST', 'https://cloud.langfuse.com')}")

# Initialize Hugging Face model
try:
    hf_pipeline = pipeline(
        "text-generation",
        model="mistralai/Mixtral-7B-Instruct-v0.1",
        device_map="auto",
        max_new_tokens=512,
        do_sample=True,
        temperature=0.7
    )
    llm = HuggingFacePipeline(pipeline=hf_pipeline)
    logger.info("HuggingFace model initialized: mistralai/Mixtral-7B-Instruct-v0.1")
except Exception as e:
    logger.error(f"Failed to initialize HuggingFace model: {e}")
    llm = None

# Initialize search tools with LLM
try:
    initialize_search_tools(llm)
    logger.info("Search tools initialized")
except Exception as e:
    logger.error(f"Failed to initialize search tools: {e}")

# Initialize Langfuse
try:
    langfuse = CallbackHandler(
        public_key=os.getenv("LANGFUSE_PUBLIC_KEY"),
        secret_key=os.getenv("LANGFUSE_SECRET_KEY"),
        host=os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com")
    )
    logger.info("Langfuse initialized successfully")
except Exception as e:
    logger.warning(f"Failed to initialize Langfuse: {e}")
    langfuse = None

# Initialize MemorySaver
memory = MemorySaver()
use_checkpointing = True

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space/api"
GAIA_FILE_URL = "https://api.gaia-benchmark.com/files/"

# --- Helper Functions ---
def log_state(task_id: str, state: JARVISState):
    """Log intermediate state to state_log.json"""
    try:
        log_entry = {
            "task_id": task_id,
            "question": state["question"],
            "tools_needed": state["tools_needed"],
            "web_results": state["web_results"],
            "file_results": state["file_results"],
            "image_results": state["image_results"],
            "calculation_results": state["calculation_results"],
            "document_results": state["document_results"],
            "answer": state["answer"]
        }
        with open("state_log.json", "a") as f:
            json.dump(log_entry, f, indent=2)
            f.write("\n")
    except Exception as e:
        logger.error(f"Error logging state for task {task_id}: {e}")

async def test_gaia_api(task_id: str) -> bool:
    """Test connectivity to GAIA file API"""
    try:
        async with aiohttp.ClientSession() as session:
            async with session.head(f"{GAIA_FILE_URL}{task_id}", timeout=5) as resp:
                return resp.status in [200, 403, 404]
    except Exception as e:
        logger.warning(f"GAIA API test failed: {e}")
        return False

# --- Node Functions ---
async def parse_question(state: JARVISState) -> JARVISState:
    try:
        question = state["question"]
        prompt = f"""Analyze this GAIA question: {question}
        Determine which tools are needed (web_search, multi_hop_search, file_parser, image_parser, calculator, document_retriever).
        Return a JSON list of tool names."""
        if llm:
            response = await llm.ainvoke(prompt, config={"callbacks": [langfuse] if langfuse else []})
            try:
                tools_needed = json.loads(response.content)
            except json.JSONDecodeError as je:
                logger.warning(f"Invalid JSON in LLM response for task {state['task_id']}: {je}")
                tools_needed = ["web_search"]
        else:
            logger.warning("No LLM available, using default tools")
            tools_needed = ["web_search"]
        state["tools_needed"] = tools_needed
        log_state(state["task_id"], state)
        return state
    except Exception as e:
        logger.error(f"Error parsing question for task {state['task_id']}: {e}")
        state["tools_needed"] = []
        log_state(state["task_id"], state)
        return state

async def tool_dispatcher(state: JARVISState) -> JARVISState:
    try:
        tools_needed = state["tools_needed"]
        updated_state = state.copy()
        can_download_files = await test_gaia_api(updated_state["task_id"])

        for tool in tools_needed:
            try:
                if tool == "web_search" or tool == "multi_hop_search":
                    result = await web_search_agent(updated_state)
                    updated_state["web_results"].extend(result["web_results"])
                elif tool == "file_parser" and can_download_files:
                    result = await file_parser_agent(updated_state)
                    updated_state["file_results"] = result["file_results"]
                elif tool == "image_parser" and can_download_files:
                    result = await image_parser_agent(updated_state)
                    updated_state["image_results"] = result["image_results"]
                elif tool == "calculator":
                    result = await calculator_agent(updated_state)
                    updated_state["calculation_results"] = result["calculation_results"]
                elif tool == "document_retriever" and can_download_files:
                    result = await document_retriever_agent(updated_state)
                    updated_state["document_results"] = result["document_results"]
            except Exception as e:
                logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {e}")
        
        log_state(updated_state["task_id"], updated_state)
        return updated_state
    except Exception as e:
        logger.error(f"Error in tool dispatcher for task {state['task_id']}: {e}")
        log_state(state["task_id"], state)
        return state

async def web_search_agent(state: JARVISState) -> JARVISState:
    try:
        results = []
        if "web_search" in state["tools_needed"]:
            result = await search_tool.invoke({"query": state["question"]})
            results.append(result)
        if "multi_hop_search" in state["tools_needed"]:
            result = await multi_hop_search_tool.invoke({"query": state["question"], "steps": 3})
            results.append(result)
        return {"web_results": results}
    except Exception as e:
        logger.error(f"Error in web search for task {state['task_id']}: {e}")
        return {"web_results": []}

async def file_parser_agent(state: JARVISState) -> JARVISState:
    try:
        if "file_parser" in state["tools_needed"]:
            file_type = "csv" if "data" in state["question"].lower() else "txt"
            result = await file_parser_tool.aparse(state["task_id"], file_type=file_type)
            return {"file_results": result}
        return {"file_results": ""}
    except Exception as e:
        logger.error(f"Error in file parser for task {state['task_id']}: {e}")
        return {"file_results": "File parsing failed"}

async def image_parser_agent(state: JARVISState) -> JARVISState:
    try:
        if "image_parser" in state["tools_needed"]:
            task = "match" if "fruits" in state["question"].lower() else "describe"
            match_query = "fruits" if task == "match" else ""
            file_path = f"temp_{state['task_id']}.jpg"
            if not os.path.exists(file_path):
                logger.warning(f"Image file not found for task {state['task_id']}")
                return {"image_results": "Image file not found"}
            result = await image_parser_tool.aparse(
                file_path, task=task, match_query=match_query
            )
            return {"image_results": result}
        return {"image_results": ""}
    except Exception as e:
        logger.error(f"Error in image parser for task {state['task_id']}: {e}")
        return {"image_results": "Image parsing failed"}

async def calculator_agent(state: JARVISState) -> JARVISState:
    try:
        if "calculator" in state["tools_needed"]:
            prompt = f"Extract a mathematical expression from: {state['question']}\n{state['file_results']}"
            if llm:
                response = await llm.ainvoke(prompt, config={"callbacks": [langfuse] if langfuse else []})
                expression = response.content
            else:
                expression = "0"
            result = await calculator_tool.aparse(expression)
            return {"calculation_results": result}
        return {"calculation_results": ""}
    except Exception as e:
        logger.error(f"Error in calculator for task {state['task_id']}: {e}")
        return {"calculation_results": "Calculation failed"}

async def document_retriever_agent(state: JARVISState) -> JARVISState:
    try:
        if "document_retriever" in state["tools_needed"]:
            file_type = "txt" if "menu" in state["question"].lower() else "csv"
            if "report" in state["question"].lower() or "document" in state["question"].lower():
                file_type = "pdf"
            result = await document_retriever_tool.aparse(
                state["task_id"], state["question"], file_type=file_type
            )
            return {"document_results": result}
        return {"document_results": ""}
    except Exception as e:
        logger.error(f"Error in document retriever for task {state['task_id']}: {e}")
        return {"document_results": "Document retrieval failed"}

async def reasoning_agent(state: JARVISState) -> JARVISState:
    try:
        prompt = f"""Question: {state['question']}
        Web Results: {state['web_results']}
        File Results: {state['file_results']}
        Image Results: {state['image_results']}
        Calculation Results: {state['calculation_results']}
        Document Results: {state['document_results']}
        Synthesize an exact-match answer for the GAIA benchmark.
        Output only the answer (e.g., '90', 'White;5876')."""
        if llm:
            response = await llm.ainvoke(
                [
                    SystemMessage(content="You are JARVIS, a precise assistant for the GAIA benchmark. Provide exact answers only."),
                    HumanMessage(content=prompt)
                ],
                config={"callbacks": [langfuse] if langfuse else []}
            )
            answer = response.content.strip()
        else:
            answer = "Unknown"
        state["answer"] = answer
        log_state(state["task_id"], state)
        return state
    except Exception as e:
        logger.error(f"Error in reasoning for task {state['task_id']}: {e}")
        state["answer"] = "Error in reasoning"
        log_state(state["task_id"], state)
        return state

def router(state: JARVISState) -> str:
    if state["tools_needed"]:
        return "tool_dispatcher"
    return "reasoning"

# --- Define StateGraph ---
workflow = StateGraph(JARVISState)
workflow.add_node("parse", parse_question)
workflow.add_node("tool_dispatcher", tool_dispatcher)
workflow.add_node("reasoning", reasoning_agent)

workflow.set_entry_point("parse")
workflow.add_conditional_edges(
    "parse",
    router,
    {
        "tool_dispatcher": "tool_dispatcher",
        "reasoning": "reasoning"
    }
)
workflow.add_edge("tool_dispatcher", "reasoning")
workflow.add_edge("reasoning", END)

# Compile graph
graph = workflow.compile(checkpointer=memory if use_checkpointing else None)

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        logger.info("BasicAgent initialized.")

    async def process_question(self, task_id: str, question: str) -> str:
        file_type = "jpg" if "image" in question.lower() else "txt"
        if "menu" in question.lower() or "report" in question.lower() or "document" in question.lower():
            file_type = "pdf"
        elif "data" in question.lower():
            file_type = "csv"

        file_path = f"temp_{task_id}.{file_type}"
        if await test_gaia_api(task_id):
            try:
                async with aiohttp.ClientSession() as session:
                    async with session.get(f"{GAIA_FILE_URL}{task_id}") as resp:
                        if resp.status == 200:
                            with open(file_path, "wb") as f:
                                f.write(await resp.read())
                        else:
                            logger.warning(f"Failed to download file for task {task_id}: HTTP {resp.status}")
            except Exception as e:
                logger.error(f"Error downloading file for task {task_id}: {e}")

        state = JARVISState(
            task_id=task_id,
            question=question,
            tools_needed=[],
            web_results=[],
            file_results="",
            image_results="",
            calculation_results="",
            document_results="",
            messages=[],
            answer=""
        )
        try:
            config = {"configurable": {"thread_id": task_id}} if use_checkpointing else {}
            result = await graph.ainvoke(state, config=config)
            return result["answer"] or "No answer generated"
        except Exception as e:
            logger.error(f"Error processing task {task_id}: {e}")
            return f"Error: {str(e)}"
        finally:
            if os.path.exists(file_path):
                try:
                    os.remove(file_path)
                except Exception as e:
                    logger.error(f"Error removing file {file_path}: {e}")

    async def async_call(self, question: str, task_id: str) -> str:
        return await self.process_question(task_id, question)

    def __call__(self, question: str, task_id: str = None) -> str:
        logger.info(f"Agent received question (first 50 chars): {question[:50]}...")
        if task_id is None:
            logger.warning("task_id not provided, using placeholder")
            task_id = "placeholder_task_id"
        try:
            try:
                loop = asyncio.get_event_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)
            return loop.run_until_complete(self.async_call(question, task_id))
        finally:
            pass

# --- Main Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if not profile:
        logger.error("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    username = f"{profile.username}"
    logger.info(f"User logged in: {username}")

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        agent = BasicAgent()
    except Exception as e:
        logger.error(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    logger.info(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            logger.error("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        logger.info(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        logger.error(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    logger.info(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            logger.warning(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, task_id)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            logger.error(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        logger.error("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)
        response.raise_for_status()
        result_data = response.json()
        logger.info(f"Server response: {result_data}")
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        logger.error(f"Submission failed: {e}")
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

# --- Build Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# JARVIS Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1. Log in to your Hugging Face account using the button below.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the JARVIS agent, and submit answers.

        ---
        **Disclaimers:**
        The agent uses a local Hugging Face model (Mixtral-7B) and async tools for the GAIA benchmark.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
    space_id = os.getenv("SPACE_ID")
    logger.info(f"SPACE_ID: {space_id}")
    logger.info("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)