Spaces:
Starting
Starting
File size: 19,731 Bytes
488dc3e 1bbca12 488dc3e 1bbca12 488dc3e 1bbca12 488dc3e 1bbca12 488dc3e 1bbca12 488dc3e 1bbca12 488dc3e 1bbca12 488dc3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import os
import gradio as gr
import requests
import aiohttp
import asyncio
import json
import nest_asyncio
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_huggingface import HuggingFacePipeline
from transformers import pipeline
from langchain_core.messages import SystemMessage, HumanMessage
from tools import search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool, calculator_tool, document_retriever_tool
from tools.search import initialize_search_tools
from state import JARVISState
import pandas as pd
from dotenv import load_dotenv
import logging
from langfuse.callback import CallbackHandler
# Set up logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Apply nest_asyncio
nest_asyncio.apply()
# Load environment variables
load_dotenv()
# Verify environment variables
required_env_vars = ["SPACE_ID", "LANGFUSE_PUBLIC_KEY", "LANGFUSE_SECRET_KEY"]
for var in required_env_vars:
if not os.getenv(var):
raise ValueError(f"Environment variable {var} is not set")
logger.info(f"Environment variables loaded: SPACE_ID={os.getenv('SPACE_ID')[:10]}..., LANGFUSE_HOST={os.getenv('LANGFUSE_HOST', 'https://cloud.langfuse.com')}")
# Initialize Hugging Face model
try:
hf_pipeline = pipeline(
"text-generation",
model="mistralai/Mixtral-7B-Instruct-v0.1",
device_map="auto",
max_new_tokens=512,
do_sample=True,
temperature=0.7
)
llm = HuggingFacePipeline(pipeline=hf_pipeline)
logger.info("HuggingFace model initialized: mistralai/Mixtral-7B-Instruct-v0.1")
except Exception as e:
logger.error(f"Failed to initialize HuggingFace model: {e}")
llm = None
# Initialize search tools with LLM
try:
initialize_search_tools(llm)
logger.info("Search tools initialized")
except Exception as e:
logger.error(f"Failed to initialize search tools: {e}")
# Initialize Langfuse
try:
langfuse = CallbackHandler(
public_key=os.getenv("LANGFUSE_PUBLIC_KEY"),
secret_key=os.getenv("LANGFUSE_SECRET_KEY"),
host=os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com")
)
logger.info("Langfuse initialized successfully")
except Exception as e:
logger.warning(f"Failed to initialize Langfuse: {e}")
langfuse = None
# Initialize MemorySaver
memory = MemorySaver()
use_checkpointing = True
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space/api"
GAIA_FILE_URL = "https://api.gaia-benchmark.com/files/"
# --- Helper Functions ---
def log_state(task_id: str, state: JARVISState):
"""Log intermediate state to state_log.json"""
try:
log_entry = {
"task_id": task_id,
"question": state["question"],
"tools_needed": state["tools_needed"],
"web_results": state["web_results"],
"file_results": state["file_results"],
"image_results": state["image_results"],
"calculation_results": state["calculation_results"],
"document_results": state["document_results"],
"answer": state["answer"]
}
with open("state_log.json", "a") as f:
json.dump(log_entry, f, indent=2)
f.write("\n")
except Exception as e:
logger.error(f"Error logging state for task {task_id}: {e}")
async def test_gaia_api(task_id: str) -> bool:
"""Test connectivity to GAIA file API"""
try:
async with aiohttp.ClientSession() as session:
async with session.head(f"{GAIA_FILE_URL}{task_id}", timeout=5) as resp:
return resp.status in [200, 403, 404]
except Exception as e:
logger.warning(f"GAIA API test failed: {e}")
return False
# --- Node Functions ---
async def parse_question(state: JARVISState) -> JARVISState:
try:
question = state["question"]
prompt = f"""Analyze this GAIA question: {question}
Determine which tools are needed (web_search, multi_hop_search, file_parser, image_parser, calculator, document_retriever).
Return a JSON list of tool names."""
if llm:
response = await llm.ainvoke(prompt, config={"callbacks": [langfuse] if langfuse else []})
try:
tools_needed = json.loads(response.content)
except json.JSONDecodeError as je:
logger.warning(f"Invalid JSON in LLM response for task {state['task_id']}: {je}")
tools_needed = ["web_search"]
else:
logger.warning("No LLM available, using default tools")
tools_needed = ["web_search"]
state["tools_needed"] = tools_needed
log_state(state["task_id"], state)
return state
except Exception as e:
logger.error(f"Error parsing question for task {state['task_id']}: {e}")
state["tools_needed"] = []
log_state(state["task_id"], state)
return state
async def tool_dispatcher(state: JARVISState) -> JARVISState:
try:
tools_needed = state["tools_needed"]
updated_state = state.copy()
can_download_files = await test_gaia_api(updated_state["task_id"])
for tool in tools_needed:
try:
if tool == "web_search" or tool == "multi_hop_search":
result = await web_search_agent(updated_state)
updated_state["web_results"].extend(result["web_results"])
elif tool == "file_parser" and can_download_files:
result = await file_parser_agent(updated_state)
updated_state["file_results"] = result["file_results"]
elif tool == "image_parser" and can_download_files:
result = await image_parser_agent(updated_state)
updated_state["image_results"] = result["image_results"]
elif tool == "calculator":
result = await calculator_agent(updated_state)
updated_state["calculation_results"] = result["calculation_results"]
elif tool == "document_retriever" and can_download_files:
result = await document_retriever_agent(updated_state)
updated_state["document_results"] = result["document_results"]
except Exception as e:
logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {e}")
log_state(updated_state["task_id"], updated_state)
return updated_state
except Exception as e:
logger.error(f"Error in tool dispatcher for task {state['task_id']}: {e}")
log_state(state["task_id"], state)
return state
async def web_search_agent(state: JARVISState) -> JARVISState:
try:
results = []
if "web_search" in state["tools_needed"]:
result = await search_tool.invoke({"query": state["question"]})
results.append(result)
if "multi_hop_search" in state["tools_needed"]:
result = await multi_hop_search_tool.invoke({"query": state["question"], "steps": 3})
results.append(result)
return {"web_results": results}
except Exception as e:
logger.error(f"Error in web search for task {state['task_id']}: {e}")
return {"web_results": []}
async def file_parser_agent(state: JARVISState) -> JARVISState:
try:
if "file_parser" in state["tools_needed"]:
file_type = "csv" if "data" in state["question"].lower() else "txt"
result = await file_parser_tool.aparse(state["task_id"], file_type=file_type)
return {"file_results": result}
return {"file_results": ""}
except Exception as e:
logger.error(f"Error in file parser for task {state['task_id']}: {e}")
return {"file_results": "File parsing failed"}
async def image_parser_agent(state: JARVISState) -> JARVISState:
try:
if "image_parser" in state["tools_needed"]:
task = "match" if "fruits" in state["question"].lower() else "describe"
match_query = "fruits" if task == "match" else ""
file_path = f"temp_{state['task_id']}.jpg"
if not os.path.exists(file_path):
logger.warning(f"Image file not found for task {state['task_id']}")
return {"image_results": "Image file not found"}
result = await image_parser_tool.aparse(
file_path, task=task, match_query=match_query
)
return {"image_results": result}
return {"image_results": ""}
except Exception as e:
logger.error(f"Error in image parser for task {state['task_id']}: {e}")
return {"image_results": "Image parsing failed"}
async def calculator_agent(state: JARVISState) -> JARVISState:
try:
if "calculator" in state["tools_needed"]:
prompt = f"Extract a mathematical expression from: {state['question']}\n{state['file_results']}"
if llm:
response = await llm.ainvoke(prompt, config={"callbacks": [langfuse] if langfuse else []})
expression = response.content
else:
expression = "0"
result = await calculator_tool.aparse(expression)
return {"calculation_results": result}
return {"calculation_results": ""}
except Exception as e:
logger.error(f"Error in calculator for task {state['task_id']}: {e}")
return {"calculation_results": "Calculation failed"}
async def document_retriever_agent(state: JARVISState) -> JARVISState:
try:
if "document_retriever" in state["tools_needed"]:
file_type = "txt" if "menu" in state["question"].lower() else "csv"
if "report" in state["question"].lower() or "document" in state["question"].lower():
file_type = "pdf"
result = await document_retriever_tool.aparse(
state["task_id"], state["question"], file_type=file_type
)
return {"document_results": result}
return {"document_results": ""}
except Exception as e:
logger.error(f"Error in document retriever for task {state['task_id']}: {e}")
return {"document_results": "Document retrieval failed"}
async def reasoning_agent(state: JARVISState) -> JARVISState:
try:
prompt = f"""Question: {state['question']}
Web Results: {state['web_results']}
File Results: {state['file_results']}
Image Results: {state['image_results']}
Calculation Results: {state['calculation_results']}
Document Results: {state['document_results']}
Synthesize an exact-match answer for the GAIA benchmark.
Output only the answer (e.g., '90', 'White;5876')."""
if llm:
response = await llm.ainvoke(
[
SystemMessage(content="You are JARVIS, a precise assistant for the GAIA benchmark. Provide exact answers only."),
HumanMessage(content=prompt)
],
config={"callbacks": [langfuse] if langfuse else []}
)
answer = response.content.strip()
else:
answer = "Unknown"
state["answer"] = answer
log_state(state["task_id"], state)
return state
except Exception as e:
logger.error(f"Error in reasoning for task {state['task_id']}: {e}")
state["answer"] = "Error in reasoning"
log_state(state["task_id"], state)
return state
def router(state: JARVISState) -> str:
if state["tools_needed"]:
return "tool_dispatcher"
return "reasoning"
# --- Define StateGraph ---
workflow = StateGraph(JARVISState)
workflow.add_node("parse", parse_question)
workflow.add_node("tool_dispatcher", tool_dispatcher)
workflow.add_node("reasoning", reasoning_agent)
workflow.set_entry_point("parse")
workflow.add_conditional_edges(
"parse",
router,
{
"tool_dispatcher": "tool_dispatcher",
"reasoning": "reasoning"
}
)
workflow.add_edge("tool_dispatcher", "reasoning")
workflow.add_edge("reasoning", END)
# Compile graph
graph = workflow.compile(checkpointer=memory if use_checkpointing else None)
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
logger.info("BasicAgent initialized.")
async def process_question(self, task_id: str, question: str) -> str:
file_type = "jpg" if "image" in question.lower() else "txt"
if "menu" in question.lower() or "report" in question.lower() or "document" in question.lower():
file_type = "pdf"
elif "data" in question.lower():
file_type = "csv"
file_path = f"temp_{task_id}.{file_type}"
if await test_gaia_api(task_id):
try:
async with aiohttp.ClientSession() as session:
async with session.get(f"{GAIA_FILE_URL}{task_id}") as resp:
if resp.status == 200:
with open(file_path, "wb") as f:
f.write(await resp.read())
else:
logger.warning(f"Failed to download file for task {task_id}: HTTP {resp.status}")
except Exception as e:
logger.error(f"Error downloading file for task {task_id}: {e}")
state = JARVISState(
task_id=task_id,
question=question,
tools_needed=[],
web_results=[],
file_results="",
image_results="",
calculation_results="",
document_results="",
messages=[],
answer=""
)
try:
config = {"configurable": {"thread_id": task_id}} if use_checkpointing else {}
result = await graph.ainvoke(state, config=config)
return result["answer"] or "No answer generated"
except Exception as e:
logger.error(f"Error processing task {task_id}: {e}")
return f"Error: {str(e)}"
finally:
if os.path.exists(file_path):
try:
os.remove(file_path)
except Exception as e:
logger.error(f"Error removing file {file_path}: {e}")
async def async_call(self, question: str, task_id: str) -> str:
return await self.process_question(task_id, question)
def __call__(self, question: str, task_id: str = None) -> str:
logger.info(f"Agent received question (first 50 chars): {question[:50]}...")
if task_id is None:
logger.warning("task_id not provided, using placeholder")
task_id = "placeholder_task_id"
try:
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(self.async_call(question, task_id))
finally:
pass
# --- Main Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile:
logger.error("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = f"{profile.username}"
logger.info(f"User logged in: {username}")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
agent = BasicAgent()
except Exception as e:
logger.error(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
logger.error("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
logger.info(f"Fetched {len(questions_data)} questions.")
except Exception as e:
logger.error(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
logger.error(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
logger.error("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
logger.info(f"Server response: {result_data}")
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
logger.error(f"Submission failed: {e}")
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# JARVIS Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the JARVIS agent, and submit answers.
---
**Disclaimers:**
The agent uses a local Hugging Face model (Mixtral-7B) and async tools for the GAIA benchmark.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
space_id = os.getenv("SPACE_ID")
logger.info(f"SPACE_ID: {space_id}")
logger.info("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |