Spaces:
Sleeping
Sleeping
File size: 22,843 Bytes
a347f05 39aee85 a347f05 39aee85 a347f05 97e1ed5 a347f05 7cee9ee a347f05 a8f33c6 a347f05 7cee9ee e13aa67 7cee9ee e13aa67 9cace94 7cee9ee fe14ef1 241b3bf 42c0ec3 fe14ef1 45fe38c fe14ef1 7cee9ee a347f05 7cee9ee 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 01da532 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 39aee85 a347f05 7cee9ee a347f05 39aee85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
from apscheduler.schedulers.background import BackgroundScheduler
# used for restarting the space
HF_TOKEN = os.environ.get("HF_TOKEN")
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
# escape HTML for logging
def escape(s: str) -> str:
s = s.replace("&", "&") # Must be done first!
s = s.replace("<", "<")
s = s.replace(">", ">")
s = s.replace('"', """)
s = s.replace("\n", "<br/>")
return s
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
imatrix_command = [
"./llama.cpp/llama-imatrix",
"-m", model_path,
"-f", train_data_path,
"-ngl", "99",
"--output-frequency", "10",
"-o", output_path,
]
if not os.path.isfile(model_path):
raise Exception(f"Model file not found: {model_path}")
print("Running imatrix command...")
process = subprocess.Popen(imatrix_command, shell=False)
try:
process.wait(timeout=60) # added wait
except subprocess.TimeoutExpired:
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=5) # grace period
except subprocess.TimeoutExpired:
print("Imatrix proc still didn't term. Forecfully terming process...")
process.kill()
print("Importance matrix generation completed.")
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
print(f"Model path: {model_path}")
print(f"Output dir: {outdir}")
if oauth_token is None or oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = [
"./llama.cpp/llama-gguf-split",
"--split",
]
if split_max_size:
split_cmd.append("--split-max-size")
split_cmd.append(split_max_size)
else:
split_cmd.append("--split-max-tensors")
split_cmd.append(str(split_max_tensors))
# args for output
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
split_cmd.append(model_path)
split_cmd.append(model_path_prefix)
print(f"Split command: {split_cmd}")
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
print(f"Split command stdout: {result.stdout}")
print(f"Split command stderr: {result.stderr}")
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error splitting the model: {stderr_str}")
print("Model split successfully!")
# remove the original model file if needed
if os.path.exists(model_path):
os.remove(model_path)
model_file_prefix = model_path_prefix.split('/')[-1]
print(f"Model file name prefix: {model_file_prefix}")
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
if sharded_model_files:
print(f"Sharded model files: {sharded_model_files}")
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join(outdir, file)
print(f"Uploading file: {file_path}")
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
print("Sharded model has been uploaded successfully!")
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
if oauth_token is None or oauth_token.token is None:
raise gr.Error("You must be logged in to use all-gguf-same-where")
# validate the oauth token
try:
whoami(oauth_token.token)
except Exception as e:
raise gr.Error("You must be logged in to use all-gguf-same-where")
model_name = model_id.split('/')[-1]
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern += [pattern]
if not os.path.exists("downloads"):
os.makedirs("downloads")
if not os.path.exists("outputs"):
os.makedirs("outputs")
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
# Keep the model name as the dirname so the model name metadata is populated correctly
local_dir = Path(tmpdir)/model_name
print(local_dir)
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Current working directory: {os.getcwd()}")
print(f"Model directory contents: {os.listdir(local_dir)}")
config_dir = local_dir/"config.json"
adapter_config_dir = local_dir/"adapter_config.json"
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
result = subprocess.run([
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
], shell=False, capture_output=True)
print(result)
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error converting to fp16: {stderr_str}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {fp16}")
imatrix_path = Path(outdir)/"imatrix.dat"
if use_imatrix:
if train_data_file:
train_data_path = train_data_file.name
else:
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
print(f"Training data file path: {train_data_path}")
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path, imatrix_path)
else:
print("Not using imatrix quantization.")
# Quantize the model
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
if use_imatrix:
quantise_ggml = [
"./llama.cpp/llama-quantize",
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
]
else:
quantise_ggml = [
"./llama.cpp/llama-quantize",
fp16, quantized_gguf_path, q_method
]
result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error quantizing: {stderr_str}")
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
print(f"Quantized model path: {quantized_gguf_path}")
# Create empty repo
username = whoami(oauth_token.token)["name"]
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-GGUF", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("matrixportal")
card.data.base_model = model_id
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [all-gguf-same-where](https://huggingface.co/spaces/matrixportal/all-gguf-same-where) space.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
"""
)
readme_path = Path(outdir)/"README.md"
card.save(readme_path)
# Quant listesi oluşturma
quant_list = f"""
## ✅ Quantized Models Download List
### 🔍 Recommended Quantizations
- **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) (Best balance of speed/quality)
- **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) (Optimized for ARM CPUs)
- **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) (Near-original quality)
### 📦 Full Quantization Options
| 🚀 Download | 🔢 Type | 📝 Notes |
|:---------|:-----|:------|
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q2_k.gguf) |  | Basic quantization |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_s.gguf) |  | Small size |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_m.gguf) |  | Balanced quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_l.gguf) |  | Better quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) |  | Fast on ARM |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_s.gguf) |  | Fast, recommended |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) |  ⭐ | Best balance |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_0.gguf) |  | Good quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_k_s.gguf) |  | Balanced |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_k_m.gguf) |  | High quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q6_k.gguf) |  🏆 | Very good quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) |  ⚡ | Fast, best quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-f16.gguf) |  | Maximum accuracy |
💡 **Tip:** Use `F16` for maximum precision when quality is critical
---
# 🚀 Applications and Tools for Locally Quantized LLMs
## 🖥️ Desktop Applications
| Application | Description | Download Link |
|-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| **Llama.cpp** | A fast and efficient inference engine for GGUF models. | [GitHub Repository](https://github.com/ggml-org/llama.cpp) |
| **Ollama** | A streamlined solution for running LLMs locally. | [Website](https://ollama.com/) |
| **AnythingLLM** | An AI-powered knowledge management tool. | [GitHub Repository](https://github.com/Mintplex-Labs/anything-llm) |
| **Open WebUI** | A user-friendly web interface for running local LLMs. | [GitHub Repository](https://github.com/open-webui/open-webui) |
| **GPT4All** | A user-friendly desktop application supporting various LLMs, compatible with GGUF models. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) |
| **LM Studio** | A desktop application designed to run and manage local LLMs, supporting GGUF format. | [Website](https://lmstudio.ai/) |
| **GPT4All Chat**| A chat application compatible with GGUF models for local, offline interactions. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) |
---
## 📱 Mobile Applications
| Application | Description | Download Link |
|-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| **ChatterUI** | A simple and lightweight LLM app for mobile devices. | [GitHub Repository](https://github.com/Vali-98/ChatterUI) |
| **Maid** | Mobile Artificial Intelligence Distribution for running AI models on mobile devices. | [GitHub Repository](https://github.com/Mobile-Artificial-Intelligence/maid) |
| **PocketPal AI** | A mobile AI assistant powered by local models. | [GitHub Repository](https://github.com/a-ghorbani/pocketpal-ai) |
| **Layla** | A flexible platform for running various AI models on mobile devices. | [Website](https://www.layla-network.ai/) |
---
## 🎨 Image Generation Applications
| Application | Description | Download Link |
|-------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| **Stable Diffusion** | An open-source AI model for generating images from text. | [GitHub Repository](https://github.com/CompVis/stable-diffusion) |
| **Stable Diffusion WebUI** | A web application providing access to Stable Diffusion models via a browser interface. | [GitHub Repository](https://github.com/AUTOMATIC1111/stable-diffusion-webui) |
| **Local Dream** | Android Stable Diffusion with Snapdragon NPU acceleration. Also supports CPU inference. | [GitHub Repository](https://github.com/xororz/local-dream) |
| **Stable-Diffusion-Android (SDAI)** | An open-source AI art application for Android devices, enabling digital art creation. | [GitHub Repository](https://github.com/ShiftHackZ/Stable-Diffusion-Android) |
---
"""
# README'yi güncelle (ModelCard kullanarak)
card.text += quant_list
readme_path = Path(outdir)/"README.md"
card.save(readme_path)
if split_model:
split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size)
else:
try:
print(f"Uploading quantized model: {quantized_gguf_path}")
api.upload_file(
path_or_fileobj=quantized_gguf_path,
path_in_repo=quantized_gguf_name,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
if os.path.isfile(imatrix_path):
try:
print(f"Uploading imatrix.dat: {imatrix_path}")
api.upload_file(
path_or_fileobj=imatrix_path,
path_in_repo="imatrix.dat",
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
return (
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
"llama.png",
)
except Exception as e:
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method = gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "f16"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False,
visible=True
)
imatrix_q_method = gr.Dropdown(
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method",
info="GGML imatrix quants type",
value="IQ4_NL",
filterable=False,
visible=False
)
use_imatrix = gr.Checkbox(
value=False,
label="Use Imatrix Quantization",
info="Use importance matrix for quantization."
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
train_data_file = gr.File(
label="Training Data File",
file_types=["txt"],
visible=False
)
split_model = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
split_max_tensors = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
split_max_size = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
visible=False
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
split_model,
split_max_tensors,
split_max_size,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
api_name=False
)
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use all-gguf-same-where.")
gr.LoginButton(min_width=250)
iface.render()
def update_split_visibility(split_model):
return gr.update(visible=split_model), gr.update(visible=split_model)
split_model.change(
fn=update_split_visibility,
inputs=split_model,
outputs=[split_max_tensors, split_max_size]
)
def update_visibility(use_imatrix):
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
use_imatrix.change(
fn=update_visibility,
inputs=use_imatrix,
outputs=[q_method, imatrix_q_method, train_data_file]
)
def restart_space():
HfApi().restart_space(repo_id="matrixportal/all-gguf-same-where", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |