Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import torch | |
import math | |
from easydict import EasyDict as edict | |
import numpy as np | |
from ..representations.gaussian import Gaussian | |
from .sh_utils import eval_sh | |
import torch.nn.functional as F | |
from easydict import EasyDict as edict | |
def intrinsics_to_projection( | |
intrinsics: torch.Tensor, | |
near: float, | |
far: float, | |
) -> torch.Tensor: | |
""" | |
Convert OpenCV-style camera intrinsics matrix to OpenGL perspective projection matrix. | |
This function transforms a standard 3x3 camera intrinsics matrix into a 4x4 perspective | |
projection matrix compatible with OpenGL rendering pipeline. The resulting matrix | |
properly handles the coordinate system differences between computer vision and | |
computer graphics conventions. | |
Args: | |
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix containing focal lengths | |
and principal point coordinates | |
near (float): Distance to the near clipping plane (must be positive) | |
far (float): Distance to the far clipping plane (must be greater than near) | |
Returns: | |
torch.Tensor: [4, 4] OpenGL perspective projection matrix for rendering | |
""" | |
# Extract focal lengths and principal point from intrinsics matrix | |
fx, fy = intrinsics[0, 0], intrinsics[1, 1] # Focal lengths in x and y directions | |
cx, cy = intrinsics[0, 2], intrinsics[1, 2] # Principal point coordinates | |
# Initialize empty 4x4 projection matrix | |
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device) | |
# Fill in the projection matrix components | |
ret[0, 0] = 2 * fx # Scale for x axis based on horizontal focal length | |
ret[1, 1] = 2 * fy # Scale for y axis based on vertical focal length | |
ret[0, 2] = 2 * cx - 1 # X offset based on principal point (OpenCV to OpenGL conversion) | |
ret[1, 2] = - 2 * cy + 1 # Y offset based on principal point (with flipped Y axis) | |
ret[2, 2] = far / (far - near) # Handle depth mapping to clip space | |
ret[2, 3] = near * far / (near - far) # Term for perspective division in clip space | |
ret[3, 2] = 1. # Enable perspective division | |
return ret | |
def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None): | |
""" | |
Render the scene using 3D Gaussians. | |
This function performs the rasterization of 3D Gaussian points into a 2D image from a given viewpoint. | |
Args: | |
viewpoint_camera: Camera parameters including position, view transform, and projection | |
pc (Gaussian): Point cloud represented as 3D Gaussians | |
pipe: Pipeline configuration parameters | |
bg_color (torch.Tensor): Background color tensor (must be on GPU) | |
scaling_modifier (float): Scale modifier for the Gaussian splats | |
override_color (torch.Tensor, optional): Custom colors to override computed SH-based colors | |
Returns: | |
edict: Dictionary containing rendered image, viewspace points, visibility filter, and radii information | |
""" | |
# Lazy import of the rasterization module to avoid circular dependencies | |
# or to improve startup performance when not needed immediately | |
if 'GaussianRasterizer' not in globals(): | |
from diff_gaussian_rasterization import GaussianRasterizer, GaussianRasterizationSettings | |
# Create zero tensor for screen space points | |
# This tensor will hold gradients of the 2D (screen-space) means for optimization | |
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 | |
try: | |
screenspace_points.retain_grad() | |
except: | |
pass | |
# Calculate camera frustum parameters from the field of view | |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
# Get kernel size from the pipeline configuration | |
kernel_size = pipe.kernel_size | |
# Initialize subpixel offset for all pixels (used for anti-aliasing) | |
subpixel_offset = torch.zeros((int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2), | |
dtype=torch.float32, device="cuda") | |
# Configure the Gaussian rasterization settings with all necessary parameters | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
kernel_size=kernel_size, | |
subpixel_offset=subpixel_offset, | |
bg=bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=pc.active_sh_degree, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False, | |
debug=pipe.debug | |
) | |
# Create the rasterizer with the configured settings | |
rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
# Get the Gaussian 3D positions and opacities | |
means3D = pc.get_xyz | |
means2D = screenspace_points | |
opacity = pc.get_opacity | |
# Handle covariance computation options | |
# Either use precomputed 3D covariance or let the rasterizer compute it from scales and rotations | |
scales = None | |
rotations = None | |
cov3D_precomp = None | |
if pipe.compute_cov3D_python: | |
# Compute 3D covariances in Python before rasterization | |
cov3D_precomp = pc.get_covariance(scaling_modifier) | |
else: | |
# Let the rasterizer compute covariances from scale and rotation | |
scales = pc.get_scaling | |
rotations = pc.get_rotation | |
# Handle color computation options | |
# Either use override colors, precomputed colors from SHs, or let the rasterizer compute colors from SHs | |
shs = None | |
colors_precomp = None | |
if override_color is None: | |
if pipe.convert_SHs_python: | |
# Convert spherical harmonics to RGB colors in Python | |
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2) | |
# Calculate the view direction from Gaussian center to camera | |
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1)) | |
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True) | |
# Evaluate spherical harmonics to get RGB colors | |
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized) | |
# Apply offset and clamp to ensure valid color values | |
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) | |
else: | |
# Let the rasterizer convert SHs to colors | |
shs = pc.get_features | |
else: | |
# Use provided override colors | |
colors_precomp = override_color | |
# Perform the rasterization to generate the final rendered image | |
# This projects the 3D Gaussians to 2D and blends them according to their opacities | |
rendered_image, radii = rasterizer( | |
means3D = means3D, | |
means2D = means2D, | |
shs = shs, | |
colors_precomp = colors_precomp, | |
opacities = opacity, | |
scales = scales, | |
rotations = rotations, | |
cov3D_precomp = cov3D_precomp | |
) | |
# Return the rendering results in a dictionary | |
# radii > 0 creates a filter for visible Gaussians (those not frustum-culled) | |
return edict({"render": rendered_image, | |
"viewspace_points": screenspace_points, | |
"visibility_filter" : radii > 0, | |
"radii": radii}) | |
class GaussianRenderer: | |
""" | |
A renderer for Gaussian Splatting that converts 3D Gaussian primitives into 2D images. | |
This renderer projects 3D Gaussian splats onto a 2D image plane using the provided | |
camera parameters, handling the rasterization process through an optimized backend. | |
Args: | |
rendering_options (dict): Configuration options for rendering including resolution, | |
depth range, background color, and supersampling level. | |
""" | |
def __init__(self, rendering_options={}) -> None: | |
# Initialize default pipeline parameters | |
self.pipe = edict({ | |
"kernel_size": 0.1, # Size of the Gaussian kernel for rasterization | |
"convert_SHs_python": False, # Whether to convert Spherical Harmonics to colors in Python | |
"compute_cov3D_python": False, # Whether to compute 3D covariance matrices in Python | |
"scale_modifier": 1.0, # Global scaling factor for all Gaussians | |
"debug": False # Enable/disable debug mode | |
}) | |
# Initialize default rendering options | |
self.rendering_options = edict({ | |
"resolution": None, # Output image resolution (width and height) | |
"near": None, # Near clipping plane distance | |
"far": None, # Far clipping plane distance | |
"ssaa": 1, # Super-sampling anti-aliasing factor (1 = disabled) | |
"bg_color": 'random', # Background color ('random' or specific color) | |
}) | |
# Update with user-provided options | |
self.rendering_options.update(rendering_options) | |
# Initialize background color (will be set during rendering) | |
self.bg_color = None | |
def render( | |
self, | |
gausssian: Gaussian, | |
extrinsics: torch.Tensor, | |
intrinsics: torch.Tensor, | |
colors_overwrite: torch.Tensor = None | |
) -> edict: | |
""" | |
Render the 3D Gaussian representation from a given camera viewpoint. | |
This method projects the 3D Gaussians onto a 2D image plane using the provided camera parameters, | |
handling the full rendering pipeline including projection, rasterization, and optional supersampling. | |
Args: | |
gaussian: The Gaussian representation containing positions, features, and other attributes | |
extrinsics (torch.Tensor): (4, 4) camera extrinsics matrix defining camera position and orientation | |
intrinsics (torch.Tensor): (3, 3) camera intrinsics matrix with focal lengths and principal point | |
colors_overwrite (torch.Tensor): Optional (N, 3) tensor to override Gaussian colors | |
Returns: | |
edict containing: | |
color (torch.Tensor): (3, H, W) rendered color image | |
""" | |
# Extract rendering parameters from options | |
resolution = self.rendering_options["resolution"] | |
near = self.rendering_options["near"] | |
far = self.rendering_options["far"] | |
ssaa = self.rendering_options["ssaa"] # Super-sampling anti-aliasing factor | |
# Set background color based on rendering options | |
if self.rendering_options["bg_color"] == 'random': | |
# Randomly choose either black or white background | |
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda") | |
if np.random.rand() < 0.5: | |
self.bg_color += 1 | |
else: | |
# Use specified background color | |
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda") | |
# Prepare camera parameters for the renderer | |
view = extrinsics # World-to-camera transform | |
# Convert OpenCV intrinsics to OpenGL projection matrix | |
perspective = intrinsics_to_projection(intrinsics, near, far) | |
# Extract camera center from extrinsics (inverse of view matrix) | |
camera = torch.inverse(view)[:3, 3] | |
# Calculate field of view from focal lengths | |
focalx = intrinsics[0, 0] | |
focaly = intrinsics[1, 1] | |
fovx = 2 * torch.atan(0.5 / focalx) # Horizontal FoV in radians | |
fovy = 2 * torch.atan(0.5 / focaly) # Vertical FoV in radians | |
# Build complete camera parameter dictionary | |
camera_dict = edict({ | |
"image_height": resolution * ssaa, # Apply supersampling if enabled | |
"image_width": resolution * ssaa, | |
"FoVx": fovx, | |
"FoVy": fovy, | |
"znear": near, | |
"zfar": far, | |
"world_view_transform": view.T.contiguous(), # Transpose for OpenGL convention | |
"projection_matrix": perspective.T.contiguous(), | |
"full_proj_transform": (perspective @ view).T.contiguous(), # Combined projection and view | |
"camera_center": camera | |
}) | |
# Perform the actual rendering using the 3D Gaussian rasterizer | |
render_ret = render(camera_dict, gausssian, self.pipe, self.bg_color, | |
override_color=colors_overwrite, scaling_modifier=self.pipe.scale_modifier) | |
# Handle supersampling by downsampling the high-resolution render to the target resolution | |
if ssaa > 1: | |
# Use bilinear interpolation with antialiasing to downsample the image | |
render_ret.render = F.interpolate(render_ret.render[None], | |
size=(resolution, resolution), | |
mode='bilinear', | |
align_corners=False, | |
antialias=True).squeeze() | |
# Return the final rendered color image | |
ret = edict({ | |
'color': render_ret['render'] | |
}) | |
return ret | |