Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from . import functional as F | |
__all__ = ['Voxelization'] | |
def my_voxelization(features, coords, resolution): | |
b, c, _ = features.shape | |
result = torch.zeros(b, c + 1, resolution * resolution * resolution, device=features.device, dtype=features.dtype) | |
r = resolution | |
r2 = resolution * resolution | |
coords = coords.long() | |
indices = coords[:, 0] * r2 + coords[:, 1] * r + coords[:, 2] | |
# print(r, r2, coords[:, 0].max(), coords[:, 1].max(), coords[:, 2].max()) | |
# print(f"Resolution: {resolution}") | |
# print(f"Coords shape: {coords.shape}") | |
# print(f"Coords max per dim: x={coords[:, 0].max()}, y={coords[:, 1].max()}, z={coords[:, 2].max()}") | |
# print(f"Coords min per dim: x={coords[:, 0].min()}, y={coords[:, 1].min()}, z={coords[:, 2].min()}") | |
# print(f"Indices shape: {indices.shape}") | |
# print(f"Indices max: {indices.max()}, min: {indices.min()}") | |
# print(f"Expected max index: {resolution * resolution * resolution - 1}") | |
# # 检查是否有越界的索引 | |
# max_valid_index = resolution * resolution * resolution - 1 | |
# invalid_mask = (indices > max_valid_index) | (indices < 0) | |
# if invalid_mask.any(): | |
# print(f"Found {invalid_mask.sum()} invalid indices!") | |
# print(f"Invalid indices: {indices[invalid_mask]}") | |
# # 找到对应的坐标 | |
# invalid_coords = coords[:, :, invalid_mask.any(dim=0)] | |
# print(f"Invalid coords shape: {invalid_coords.shape}") | |
# if invalid_coords.numel() > 0: | |
# print(f"Sample invalid coords: {invalid_coords[:, :, :5]}") # 显示前5个无效坐标 | |
indices = indices.unsqueeze(dim=1).expand(-1, result.shape[1], -1) | |
features = torch.cat([features, torch.ones(features.shape[0], 1, features.shape[2], device=features.device, dtype=features.dtype)], dim=1) | |
out_feature = result.scatter_(index=indices.long(), src=features, dim=2, reduce='add') | |
cnt = out_feature[:, -1:, :] | |
zero_mask = (cnt == 0).to(features.dtype) | |
cnt = cnt * (1 - zero_mask) + zero_mask * 1e-5 | |
vox_feature = out_feature[:, :-1, :] / cnt | |
return vox_feature.view(b, c, resolution, resolution, resolution) | |
class Voxelization(nn.Module): | |
def __init__(self, resolution, normalize=True, eps=0, scale_pvcnn=False): | |
super().__init__() | |
self.r = int(resolution) | |
self.normalize = normalize | |
self.eps = eps | |
self.scale_pvcnn = scale_pvcnn | |
assert not normalize | |
def forward(self, features, coords): | |
# import pdb; pdb.set_trace() | |
with torch.no_grad(): | |
coords = coords.detach() | |
if self.normalize: | |
norm_coords = norm_coords / (norm_coords.norm(dim=1, keepdim=True).max(dim=2, keepdim=True).values * 2.0 + self.eps) + 0.5 | |
else: | |
if self.scale_pvcnn: | |
norm_coords = (coords + 1) / 2.0 # [0, 1] | |
# print(norm_coords.shape, norm_coords.max(), norm_coords.min()) | |
else: | |
# norm_coords = (norm_coords + 1) / 2.0 | |
norm_coords = (coords + 1) / 2.0 | |
norm_coords = torch.clamp(norm_coords * self.r, 0, self.r - 1) | |
# print(norm_coords.shape, norm_coords.max(), norm_coords.min()) | |
vox_coords = torch.round(norm_coords) | |
# print(vox_coords.shape, vox_coords.max(), vox_coords.min()) | |
# print(features.shape) | |
new_vox_feat = my_voxelization(features, vox_coords, self.r) | |
return new_vox_feat, norm_coords | |
def extra_repr(self): | |
return 'resolution={}{}'.format(self.r, ', normalized eps = {}'.format(self.eps) if self.normalize else '') | |