Spaces:
Running
on
Zero
Running
on
Zero
""" | |
General utility functions for the TRELLIS project. | |
This module provides a collection of utility functions organized into several categories: | |
- Dictionary utilities: Operations for merging, traversal, reduction, and flattening of dictionaries | |
- Context management: Tools for managing nested context managers | |
- Image utilities: Functions for creating image grids and annotating images | |
- Debug utilities: Tools for numerical comparison and tolerance checking | |
- Print utilities: Helpers for text formatting and display | |
""" | |
import re | |
import numpy as np | |
import cv2 | |
import torch | |
import contextlib | |
# Dictionary utils | |
def _dict_merge(dicta, dictb, prefix=''): | |
""" | |
Merge two dictionaries recursively with conflict detection. | |
Args: | |
dicta: First dictionary to merge | |
dictb: Second dictionary to merge | |
prefix: Used for error reporting to track nested keys | |
Returns: | |
A new merged dictionary | |
Raises: | |
ValueError: If the same key exists in both dictionaries but has different types | |
""" | |
assert isinstance(dicta, dict), 'input must be a dictionary' | |
assert isinstance(dictb, dict), 'input must be a dictionary' | |
dict_ = {} | |
# Get all unique keys from both dictionaries | |
all_keys = set(dicta.keys()).union(set(dictb.keys())) | |
for key in all_keys: | |
if key in dicta.keys() and key in dictb.keys(): | |
# If key exists in both, recursively merge if both are dictionaries | |
if isinstance(dicta[key], dict) and isinstance(dictb[key], dict): | |
dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}') | |
else: | |
# Raise error for conflicting non-dictionary values | |
raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}') | |
elif key in dicta.keys(): | |
# Copy values from first dictionary | |
dict_[key] = dicta[key] | |
else: | |
# Copy values from second dictionary | |
dict_[key] = dictb[key] | |
return dict_ | |
def dict_merge(dicta, dictb): | |
""" | |
Merge two dictionaries. | |
This is the public interface that wraps _dict_merge with default prefix. | |
""" | |
return _dict_merge(dicta, dictb, prefix='') | |
def dict_foreach(dic, func, special_func={}): | |
""" | |
Recursively apply a function to all non-dictionary leaf values in a dictionary. | |
Args: | |
dic: Dictionary to process | |
func: Default function to apply to each leaf value | |
special_func: Dictionary mapping keys to special functions for specific keys | |
Returns: | |
Transformed dictionary with function applied to all leaf values | |
""" | |
assert isinstance(dic, dict), 'input must be a dictionary' | |
for key in dic.keys(): | |
if isinstance(dic[key], dict): | |
# Recursively process nested dictionaries | |
dic[key] = dict_foreach(dic[key], func) | |
else: | |
# Apply special function if key is in special_func, otherwise use default | |
if key in special_func.keys(): | |
dic[key] = special_func[key](dic[key]) | |
else: | |
dic[key] = func(dic[key]) | |
return dic | |
def dict_reduce(dicts, func, special_func={}): | |
""" | |
Reduce a list of dictionaries. Leaf values must be scalars. | |
Args: | |
dicts: List of dictionaries to reduce | |
func: Default reduction function (takes a list of values, returns single value) | |
special_func: Dictionary mapping keys to special reduction functions | |
Returns: | |
A single merged dictionary with values reduced according to the provided functions | |
""" | |
assert isinstance(dicts, list), 'input must be a list of dictionaries' | |
assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries' | |
assert len(dicts) > 0, 'input must be a non-empty list of dictionaries' | |
# Collect all unique keys across all dictionaries | |
all_keys = set([key for dict_ in dicts for key in dict_.keys()]) | |
reduced_dict = {} | |
for key in all_keys: | |
# Extract values for this key from all dictionaries | |
vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()] | |
if isinstance(vlist[0], dict): | |
# Recursively reduce nested dictionaries | |
reduced_dict[key] = dict_reduce(vlist, func, special_func) | |
else: | |
# Apply special function if key is in special_func, otherwise use default | |
if key in special_func.keys(): | |
reduced_dict[key] = special_func[key](vlist) | |
else: | |
reduced_dict[key] = func(vlist) | |
return reduced_dict | |
def dict_any(dic, func): | |
""" | |
Check if any value in the dictionary satisfies the given predicate function. | |
Args: | |
dic: Dictionary to check | |
func: Predicate function that returns True/False for each leaf value | |
Returns: | |
True if any leaf value satisfies the predicate, False otherwise | |
dict any time: {'step': 16.795613527297974, 'elapsed': 16.795613527297974} | |
dict any step: 16.795613527297974 | |
dict any elapsed: 16.795613527297974 | |
dict any loss: {'bin_3': {'mse': nan}, 'bin_5': {'mse': nan}, 'mse': nan, 'loss': nan, 'bin_4': {'mse': nan}, 'bin_7': {'mse': nan}, 'bin_8': {'mse': nan}} | |
dict any bin_3: {'mse': nan} | |
dict any mse: nan | |
""" | |
assert isinstance(dic, dict), 'input must be a dictionary' | |
for key in dic.keys(): | |
# print(f"dict any {key}: {dic[key]}") | |
if isinstance(dic[key], dict): | |
# Recursively check nested dictionaries | |
if dict_any(dic[key], func): | |
return True | |
else: | |
# Check current value against predicate | |
if func(dic[key]): | |
return True | |
return False | |
def dict_all(dic, func): | |
""" | |
Check if all values in the dictionary satisfy the given predicate function. | |
Args: | |
dic: Dictionary to check | |
func: Predicate function that returns True/False for each leaf value | |
Returns: | |
True if all leaf values satisfy the predicate, False otherwise | |
""" | |
assert isinstance(dic, dict), 'input must be a dictionary' | |
for key in dic.keys(): | |
if isinstance(dic[key], dict): | |
# Recursively check nested dictionaries | |
if not dict_all(dic[key], func): | |
return False | |
else: | |
# Check current value against predicate | |
if not func(dic[key]): | |
return False | |
return True | |
def dict_flatten(dic, sep='.'): | |
""" | |
Flatten a nested dictionary into a dictionary with no nested dictionaries. | |
Args: | |
dic: Dictionary to flatten | |
sep: Separator string used to join key levels in the flattened dictionary | |
Returns: | |
A flattened dictionary with compound keys joined by the separator | |
""" | |
assert isinstance(dic, dict), 'input must be a dictionary' | |
flat_dict = {} | |
for key in dic.keys(): | |
if isinstance(dic[key], dict): | |
# Recursively flatten nested dictionaries and prefix with current key | |
sub_dict = dict_flatten(dic[key], sep=sep) | |
for sub_key in sub_dict.keys(): | |
flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key] | |
else: | |
# Copy leaf values directly | |
flat_dict[key] = dic[key] | |
return flat_dict | |
# Context utils | |
def nested_contexts(*contexts): | |
""" | |
Create a single context manager from multiple context manager factories. | |
This utility allows combining multiple context managers into a single | |
context manager, simplifying code that needs to use multiple contexts. | |
Args: | |
*contexts: Context manager factory functions (functions that return context managers) | |
Yields: | |
Control to the inner block when all contexts are entered | |
""" | |
with contextlib.ExitStack() as stack: | |
for ctx in contexts: | |
stack.enter_context(ctx()) | |
yield | |
# Image utils | |
def make_grid(images, nrow=None, ncol=None, aspect_ratio=None): | |
""" | |
Arrange multiple images into a grid. | |
Args: | |
images: List of images to arrange | |
nrow: Number of rows (calculated if not provided) | |
ncol: Number of columns (calculated if not provided) | |
aspect_ratio: Desired width/height ratio for the grid layout | |
Returns: | |
A single image containing the grid of input images | |
""" | |
num_images = len(images) | |
# Calculate grid dimensions if not explicitly provided | |
if nrow is None and ncol is None: | |
if aspect_ratio is not None: | |
# Calculate rows to achieve desired aspect ratio | |
nrow = int(np.round(np.sqrt(num_images / aspect_ratio))) | |
else: | |
# Default to a roughly square grid | |
nrow = int(np.sqrt(num_images)) | |
ncol = (num_images + nrow - 1) // nrow | |
elif nrow is None and ncol is not None: | |
# Calculate rows based on fixed columns | |
nrow = (num_images + ncol - 1) // ncol | |
elif nrow is not None and ncol is None: | |
# Calculate columns based on fixed rows | |
ncol = (num_images + nrow - 1) // nrow | |
else: | |
assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images' | |
# Create empty grid with appropriate dimensions | |
if images[0].ndim == 2: | |
# Grayscale images | |
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1]), dtype=images[0].dtype) | |
else: | |
# Color images | |
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype) | |
# Place each image in the grid | |
for i, img in enumerate(images): | |
row = i // ncol | |
col = i % ncol | |
grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img | |
return grid | |
def notes_on_image(img, notes=None): | |
""" | |
Add text notes to an image by padding the bottom and adding text. | |
Args: | |
img: Input image | |
notes: Text to add at the bottom of the image | |
Returns: | |
Image with notes added | |
""" | |
# Add padding at the bottom for the notes | |
img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
if notes is not None: | |
# Add text to the padded area | |
img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return img | |
def save_image_with_notes(img, path, notes=None): | |
""" | |
Save an image with optional text notes at the bottom. | |
Args: | |
img: Input image (numpy array or PyTorch tensor) | |
path: File path to save the image | |
notes: Optional text to add at the bottom of the image | |
""" | |
# Convert PyTorch tensor to numpy if needed | |
if isinstance(img, torch.Tensor): | |
img = img.cpu().numpy().transpose(1, 2, 0) | |
# Scale floating point images to 0-255 range | |
if img.dtype == np.float32 or img.dtype == np.float64: | |
img = np.clip(img * 255, 0, 255).astype(np.uint8) | |
# Add notes to the image | |
img = notes_on_image(img, notes) | |
# Save with proper color conversion for OpenCV | |
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) | |
# debug utils | |
def atol(x, y): | |
""" | |
Absolute tolerance - computes absolute difference between x and y. | |
Useful for numerical comparisons when absolute error matters. | |
Args: | |
x, y: Tensors to compare | |
Returns: | |
Absolute difference |x - y| | |
""" | |
return torch.abs(x - y) | |
def rtol(x, y): | |
""" | |
Relative tolerance - computes relative difference between x and y. | |
Useful for numerical comparisons when relative error matters, | |
especially when comparing values of different magnitudes. | |
Args: | |
x, y: Tensors to compare | |
Returns: | |
Relative difference |x - y| / max(|x|, |y|) | |
""" | |
return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12) | |
# print utils | |
def indent(s, n=4): | |
""" | |
Indent a multi-line string. | |
Args: | |
s: Input string to indent | |
n: Number of spaces to add before each line (except the first) | |
Returns: | |
Indented string with all lines except the first indented by n spaces | |
""" | |
lines = s.split('\n') | |
for i in range(1, len(lines)): | |
lines[i] = ' ' * n + lines[i] | |
return '\n'.join(lines) | |