Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file implements a Sparse Structure Flow model for 3D data generation or transformation. | |
It contains a transformer-based architecture that processes 3D volumes by: | |
1. Embedding timesteps for diffusion/flow-based modeling | |
2. Patchifying 3D inputs for efficient processing | |
3. Using cross-attention mechanisms to condition the generation on external features | |
4. Supporting various positional encoding schemes for 3D data | |
The model is designed for high-dimensional structure generation with conditional inputs | |
and follows a transformer-based architecture similar to DiT (Diffusion Transformers). | |
""" | |
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from ..modules.utils import convert_module_to_f16, convert_module_to_f32 | |
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock | |
from ..modules.spatial import patchify, unpatchify | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
This is crucial for diffusion models where the model needs to know | |
which noise level (timestep) it's currently operating at. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
""" | |
Initialize the timestep embedder. | |
Args: | |
hidden_size: Dimension of the output embeddings | |
frequency_embedding_size: Dimension of the intermediate frequency embeddings | |
""" | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings similar to positional encodings in transformers. | |
Args: | |
t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
dim: the dimension of the output. | |
max_period: controls the minimum frequency of the embeddings. | |
Returns: | |
an (N, D) Tensor of positional embeddings. | |
""" | |
# Implementation based on OpenAI's GLIDE repository | |
half = dim // 2 | |
freqs = torch.exp( | |
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
""" | |
Embed timesteps into vectors. | |
Args: | |
t: Timesteps to embed [batch_size] | |
Returns: | |
Embedded timesteps [batch_size, hidden_size] | |
""" | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class SparseStructureFlowModel(nn.Module): | |
""" | |
A transformer-based model for processing 3D data with conditional inputs. | |
The model patchifies 3D volumes, processes them with transformer blocks, | |
and then reconstructs the 3D volume at the output. | |
""" | |
def __init__( | |
self, | |
resolution: int, | |
in_channels: int, | |
model_channels: int, | |
cond_channels: int, | |
out_channels: int, | |
num_blocks: int, | |
num_heads: Optional[int] = None, | |
num_head_channels: Optional[int] = 64, | |
mlp_ratio: float = 4, | |
patch_size: int = 2, | |
pe_mode: Literal["ape", "rope"] = "ape", | |
use_fp16: bool = False, | |
use_checkpoint: bool = False, | |
share_mod: bool = False, | |
qk_rms_norm: bool = False, | |
qk_rms_norm_cross: bool = False, | |
): | |
""" | |
Initialize the Sparse Structure Flow model. | |
Args: | |
resolution: Input resolution (assumes cubic inputs of shape [resolution, resolution, resolution]) | |
in_channels: Number of input channels | |
model_channels: Number of model's internal channels | |
cond_channels: Number of channels in conditional input | |
out_channels: Number of output channels | |
num_blocks: Number of transformer blocks | |
num_heads: Number of attention heads (defaults to model_channels // num_head_channels) | |
num_head_channels: Number of channels per attention head | |
mlp_ratio: Ratio for MLP hidden dimension relative to model_channels | |
patch_size: Size of patches for patchifying the input | |
pe_mode: Type of positional encoding ("ape" for absolute, "rope" for rotary) | |
use_fp16: Whether to use FP16 precision for most operations | |
use_checkpoint: Whether to use gradient checkpointing to save memory | |
share_mod: Whether to share modulation layers across blocks | |
qk_rms_norm: Whether to use RMS normalization for query and key in self-attention | |
qk_rms_norm_cross: Whether to use RMS normalization for query and key in cross-attention | |
""" | |
super().__init__() | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.cond_channels = cond_channels | |
self.out_channels = out_channels | |
self.num_blocks = num_blocks | |
self.num_heads = num_heads or model_channels // num_head_channels | |
self.mlp_ratio = mlp_ratio | |
self.patch_size = patch_size | |
self.pe_mode = pe_mode | |
self.use_fp16 = use_fp16 | |
self.use_checkpoint = use_checkpoint | |
self.share_mod = share_mod | |
self.qk_rms_norm = qk_rms_norm | |
self.qk_rms_norm_cross = qk_rms_norm_cross | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
# Timestep embedding network | |
self.t_embedder = TimestepEmbedder(model_channels) | |
# Optional shared modulation for all blocks | |
if share_mod: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(model_channels, 6 * model_channels, bias=True) | |
) | |
# Set up positional encoding | |
if pe_mode == "ape": | |
pos_embedder = AbsolutePositionEmbedder(model_channels, 3) | |
# Create a grid of 3D coordinates for each patch position | |
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij') | |
coords = torch.stack(coords, dim=-1).reshape(-1, 3) | |
pos_emb = pos_embedder(coords) | |
self.register_buffer("pos_emb", pos_emb) | |
# Input projection layer | |
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels) | |
# Transformer blocks with cross-attention for conditioning | |
self.blocks = nn.ModuleList([ | |
ModulatedTransformerCrossBlock( | |
model_channels, | |
cond_channels, | |
num_heads=self.num_heads, | |
mlp_ratio=self.mlp_ratio, | |
attn_mode='full', | |
use_checkpoint=self.use_checkpoint, | |
use_rope=(pe_mode == "rope"), | |
share_mod=share_mod, | |
qk_rms_norm=self.qk_rms_norm, | |
qk_rms_norm_cross=self.qk_rms_norm_cross, | |
) | |
for _ in range(num_blocks) | |
]) | |
# Output projection layer | |
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3) | |
# Initialize model weights | |
self.initialize_weights() | |
if use_fp16: | |
self.convert_to_fp16() | |
def device(self) -> torch.device: | |
""" | |
Return the device of the model. | |
""" | |
return next(self.parameters()).device | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the transformer blocks of the model to float16 for improved efficiency. | |
""" | |
self.blocks.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the transformer blocks of the model back to float32 (e.g., for inference). | |
""" | |
self.blocks.apply(convert_module_to_f32) | |
def initialize_weights(self) -> None: | |
""" | |
Initialize the weights of the model using carefully chosen initialization schemes. | |
""" | |
# Initialize transformer layers with Xavier uniform initialization | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize timestep embedding MLP with normal distribution | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers to ensure stable training initially | |
if self.share_mod: | |
nn.init.constant_(self.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.adaLN_modulation[-1].bias, 0) | |
else: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers to ensure initial predictions are near zero | |
nn.init.constant_(self.out_layer.weight, 0) | |
nn.init.constant_(self.out_layer.bias, 0) | |
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass of the model. | |
Args: | |
x: Input tensor of shape [batch_size, in_channels, resolution, resolution, resolution] | |
t: Timestep tensor of shape [batch_size] | |
cond: Conditional input tensor | |
Returns: | |
Output tensor of shape [batch_size, out_channels, resolution, resolution, resolution] | |
""" | |
# Validate input shape | |
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \ | |
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}" | |
# Patchify the input volume and reshape for transformer processing | |
h = patchify(x, self.patch_size) | |
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous() # [B, num_patches, patch_dim] | |
# Project to model dimension | |
h = self.input_layer(h) | |
# Add positional embeddings | |
h = h + self.pos_emb[None] | |
# Get timestep embeddings | |
t_emb = self.t_embedder(t) | |
if self.share_mod: | |
t_emb = self.adaLN_modulation(t_emb) | |
# Convert to appropriate dtype for computation | |
t_emb = t_emb.type(self.dtype) | |
h = h.type(self.dtype) | |
cond = cond.type(self.dtype) | |
# print("transfer cond") | |
# print("*" * 20) | |
# print(cond.shape) # torch.Size([4, 4122, 1024]) | |
# Process through transformer blocks | |
for block in self.blocks: | |
h = block(h, t_emb, cond) | |
# print("transferred ") | |
# Convert back to original dtype | |
h = h.type(x.dtype) | |
# Final normalization and projection | |
h = F.layer_norm(h, h.shape[-1:]) | |
h = self.out_layer(h) | |
# Reshape and unpatchify to get final 3D output | |
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3) | |
h = unpatchify(h, self.patch_size).contiguous() | |
return h | |