Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from . import functional as F | |
from .voxelization import Voxelization | |
from .shared_mlp import SharedMLP | |
import torch | |
__all__ = ['PVConv'] | |
class PVConv(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size, resolution, with_se=False, normalize=True, eps=0, scale_pvcnn=False, | |
device='cuda'): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.resolution = resolution | |
self.voxelization = Voxelization(resolution, normalize=normalize, eps=eps, scale_pvcnn=scale_pvcnn) | |
voxel_layers = [ | |
nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2, device=device), | |
nn.InstanceNorm3d(out_channels, eps=1e-4, device=device), | |
nn.LeakyReLU(0.1, True), | |
nn.Conv3d(out_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2, device=device), | |
nn.InstanceNorm3d(out_channels, eps=1e-4, device=device), | |
nn.LeakyReLU(0.1, True), | |
] | |
self.voxel_layers = nn.Sequential(*voxel_layers) | |
self.point_features = SharedMLP(in_channels, out_channels, device=device) | |
def forward(self, inputs): | |
features, coords = inputs | |
voxel_features, voxel_coords = self.voxelization(features, coords) | |
voxel_features = self.voxel_layers(voxel_features) | |
devoxel_features = F.trilinear_devoxelize(voxel_features, voxel_coords, self.resolution, self.training) | |
fused_features = devoxel_features + self.point_features(features) | |
return fused_features, coords, voxel_features | |