Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file implements radiance field decoders for Structured Latent VAE models. | |
The main class SLatRadianceFieldDecoder is a sparse transformer-based decoder that | |
transforms latent codes into sparse representations of 3D scenes (Strivec representation). | |
It also includes an elastic memory version (ElasticSLatRadianceFieldDecoder) for low VRAM training. | |
""" | |
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from ...modules import sparse as sp | |
from .base import SparseTransformerBase | |
from ...representations import Strivec | |
from ..sparse_elastic_mixin import SparseTransformerElasticMixin | |
class SLatRadianceFieldDecoder(SparseTransformerBase): | |
""" | |
A sparse transformer-based decoder for converting latent codes to radiance field representations. | |
This decoder processes sparse tensors through transformer blocks and outputs parameters for Strivec representation. | |
""" | |
def __init__( | |
self, | |
resolution: int, # Resolution of the output 3D grid | |
model_channels: int, # Number of channels in the model's hidden layers | |
latent_channels: int, # Number of channels in the latent code | |
num_blocks: int, # Number of transformer blocks | |
num_heads: Optional[int] = None, # Number of attention heads | |
num_head_channels: Optional[int] = 64, # Channels per attention head | |
mlp_ratio: float = 4, # Ratio for MLP hidden dimension | |
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", # Attention mode | |
window_size: int = 8, # Size of local attention window | |
pe_mode: Literal["ape", "rope"] = "ape", # Positional encoding mode | |
use_fp16: bool = False, # Whether to use half precision | |
use_checkpoint: bool = False, # Whether to use gradient checkpointing | |
qk_rms_norm: bool = False, # Whether to normalize query and key | |
representation_config: dict = None, # Configuration for output representation | |
): | |
# Initialize the base sparse transformer | |
super().__init__( | |
in_channels=latent_channels, | |
model_channels=model_channels, | |
num_blocks=num_blocks, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
mlp_ratio=mlp_ratio, | |
attn_mode=attn_mode, | |
window_size=window_size, | |
pe_mode=pe_mode, | |
use_fp16=use_fp16, | |
use_checkpoint=use_checkpoint, | |
qk_rms_norm=qk_rms_norm, | |
) | |
self.resolution = resolution | |
self.rep_config = representation_config | |
self._calc_layout() # Calculate the output layout | |
# Final layer to project features to the output representation | |
self.out_layer = sp.SparseLinear(model_channels, self.out_channels) | |
self.initialize_weights() | |
if use_fp16: | |
self.convert_to_fp16() | |
def initialize_weights(self) -> None: | |
""" | |
Initialize the weights of the model. | |
Zero-initializes the output layer for better training stability. | |
""" | |
super().initialize_weights() | |
# Zero-out output layers for better training stability | |
nn.init.constant_(self.out_layer.weight, 0) | |
nn.init.constant_(self.out_layer.bias, 0) | |
def _calc_layout(self) -> None: | |
""" | |
Calculate the output tensor layout for the Strivec representation. | |
Defines the shapes and sizes of different components and their positions in the output tensor. | |
""" | |
self.layout = { | |
'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']}, | |
'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']}, | |
'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3}, | |
} | |
# Calculate the range (start, end) indices for each component in the output tensor | |
start = 0 | |
for k, v in self.layout.items(): | |
v['range'] = (start, start + v['size']) | |
start += v['size'] | |
self.out_channels = start | |
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]: | |
""" | |
Convert a batch of network outputs to 3D representations. | |
Args: | |
x: The [N x * x C] sparse tensor output by the network. | |
Returns: | |
list of Strivec representations, one per batch item | |
""" | |
ret = [] | |
for i in range(x.shape[0]): | |
# Create a new Strivec representation | |
representation = Strivec( | |
sh_degree=0, | |
resolution=self.resolution, | |
aabb=[-0.5, -0.5, -0.5, 1, 1, 1], # Axis-aligned bounding box | |
rank=self.rep_config['rank'], | |
dim=self.rep_config['dim'], | |
device='cuda', | |
) | |
representation.density_shift = 0.0 | |
# Set position from sparse coordinates (normalized to [0,1]) | |
representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution | |
# Set depth (octree level) based on resolution | |
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda') | |
# Extract each component from the output features according to the layout | |
for k, v in self.layout.items(): | |
setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape'])) | |
# Add 1 to trivec for stability (prevent zero vectors) | |
representation.trivec = representation.trivec + 1 | |
ret.append(representation) | |
return ret | |
def forward(self, x: sp.SparseTensor) -> List[Strivec]: | |
""" | |
Forward pass through the decoder. | |
Args: | |
x: Input sparse tensor containing latent codes | |
Returns: | |
List of Strivec representations | |
""" | |
# Pass through transformer backbone | |
h = super().forward(x) | |
h = h.type(x.dtype) | |
# Layer normalization on feature dimension | |
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) | |
# Final projection to output features | |
h = self.out_layer(h) | |
# Convert network output to Strivec representations | |
return self.to_representation(h) | |
class ElasticSLatRadianceFieldDecoder(SparseTransformerElasticMixin, SLatRadianceFieldDecoder): | |
""" | |
Slat VAE Radiance Field Decoder with elastic memory management. | |
Used for training with low VRAM by dynamically managing memory allocation | |
and performing operations in chunks when needed. | |
""" | |
pass | |