Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Mesh Decoder Module for Structured Latent VAE | |
This file implements a mesh-based decoder for the structured latent variational autoencoder (SLAT VAE). | |
It contains specialized sparse neural network components that transform latent representations into | |
3D mesh structures through a series of sparse convolutions and subdivisions. | |
The module implements: | |
1. SparseSubdivideBlock3d - A block that subdivides sparse tensors to increase resolution | |
2. SLatMeshDecoder - Main decoder that transforms latent codes into 3D meshes | |
3. ElasticSLatMeshDecoder - Memory-efficient version for low VRAM environments | |
""" | |
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 | |
from ...modules import sparse as sp | |
from .base import SparseTransformerBase | |
from ...representations import MeshExtractResult | |
from ...representations.mesh import SparseFeatures2Mesh | |
from ..sparse_elastic_mixin import SparseTransformerElasticMixin | |
class SparseSubdivideBlock3d(nn.Module): | |
""" | |
A 3D subdivide block that can subdivide the sparse tensor. | |
This block increases the resolution of sparse tensors by a factor of 2, | |
and optionally changes the number of channels. | |
Args: | |
channels: channels in the inputs and outputs. | |
resolution: the current resolution of the sparse tensor. | |
out_channels: if specified, the number of output channels. | |
num_groups: the number of groups for the group norm. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
resolution: int, | |
out_channels: Optional[int] = None, | |
num_groups: int = 32 | |
): | |
super().__init__() | |
self.channels = channels | |
self.resolution = resolution | |
self.out_resolution = resolution * 2 | |
self.out_channels = out_channels or channels | |
# Normalization and activation before subdivision | |
self.act_layers = nn.Sequential( | |
sp.SparseGroupNorm32(num_groups, channels), | |
sp.SparseSiLU() | |
) | |
# Subdivision operator that doubles the resolution | |
self.sub = sp.SparseSubdivide() | |
# Post-subdivision processing with residual connection | |
self.out_layers = nn.Sequential( | |
sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"), | |
sp.SparseGroupNorm32(num_groups, self.out_channels), | |
sp.SparseSiLU(), | |
zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")), | |
) | |
# Skip connection that handles potential channel dimension changes | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
else: | |
self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}") | |
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor: | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
Args: | |
x: an [N x C x ...] Tensor of features. | |
Returns: | |
an [N x C x ...] Tensor of outputs with doubled resolution. | |
""" | |
h = self.act_layers(x) | |
h = self.sub(h) # Double the resolution | |
x = self.sub(x) # Also subdivide the input for skip connection | |
h = self.out_layers(h) | |
h = h + self.skip_connection(x) # Add skip connection | |
return h | |
class SLatMeshDecoder(SparseTransformerBase): | |
""" | |
Structured Latent Mesh Decoder that transforms latent codes into 3D meshes. | |
Uses sparse transformers followed by upsampling blocks to generate high-resolution | |
features that are then converted to meshes. | |
""" | |
def __init__( | |
self, | |
resolution: int, | |
model_channels: int, | |
latent_channels: int, | |
num_blocks: int, | |
num_heads: Optional[int] = None, | |
num_head_channels: Optional[int] = 64, | |
mlp_ratio: float = 4, | |
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", | |
window_size: int = 8, | |
pe_mode: Literal["ape", "rope"] = "ape", | |
use_fp16: bool = False, | |
use_checkpoint: bool = False, | |
qk_rms_norm: bool = False, | |
representation_config: dict = None, | |
): | |
# Initialize the transformer backbone | |
super().__init__( | |
in_channels=latent_channels, | |
model_channels=model_channels, | |
num_blocks=num_blocks, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
mlp_ratio=mlp_ratio, | |
attn_mode=attn_mode, | |
window_size=window_size, | |
pe_mode=pe_mode, | |
use_fp16=use_fp16, | |
use_checkpoint=use_checkpoint, | |
qk_rms_norm=qk_rms_norm, | |
) | |
self.resolution = resolution | |
self.rep_config = representation_config | |
# Mesh extractor to convert features to mesh representation | |
self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False)) | |
self.out_channels = self.mesh_extractor.feats_channels | |
# Upsampling blocks that progressively increase resolution | |
self.upsample = nn.ModuleList([ | |
SparseSubdivideBlock3d( | |
channels=model_channels, | |
resolution=resolution, | |
out_channels=model_channels // 4 | |
), | |
SparseSubdivideBlock3d( | |
channels=model_channels // 4, | |
resolution=resolution * 2, | |
out_channels=model_channels // 8 | |
) | |
]) | |
# Final layer to map features to mesh attributes | |
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels) | |
self.initialize_weights() | |
if use_fp16: | |
self.convert_to_fp16() | |
def initialize_weights(self) -> None: | |
"""Initialize model weights, with special handling for output layers.""" | |
super().initialize_weights() | |
# Zero-out output layers for stable training | |
nn.init.constant_(self.out_layer.weight, 0) | |
nn.init.constant_(self.out_layer.bias, 0) | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the torso of the model to float16 for memory efficiency. | |
""" | |
super().convert_to_fp16() | |
self.upsample.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the torso of the model back to float32 for precision. | |
""" | |
super().convert_to_fp32() | |
self.upsample.apply(convert_module_to_f32) | |
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]: | |
""" | |
Convert a batch of network outputs to 3D mesh representations. | |
Args: | |
x: The [N x * x C] sparse tensor output by the network. | |
Returns: | |
list of mesh representation results, one per batch item | |
""" | |
ret = [] | |
for i in range(x.shape[0]): | |
mesh = self.mesh_extractor(x[i], training=self.training) | |
ret.append(mesh) | |
return ret | |
def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]: | |
""" | |
Process latent codes through the decoder and extract meshes. | |
Args: | |
x: Input sparse tensor of latent codes | |
Returns: | |
List of extracted mesh representations | |
""" | |
h = super().forward(x) # Process through transformer blocks | |
for block in self.upsample: | |
h = block(h) # Progressively increase resolution | |
h = h.type(x.dtype) | |
h = self.out_layer(h) # Final projection to mesh features | |
return self.to_representation(h) # Convert features to meshes | |
class ElasticSLatMeshDecoder(SparseTransformerElasticMixin, SLatMeshDecoder): | |
""" | |
Structured Latent Mesh Decoder with elastic memory management. | |
This variant uses elastic sparse tensor operations to reduce memory usage | |
during training, making it suitable for environments with limited VRAM. | |
""" | |
pass | |