Spaces:
Running
on
Zero
Running
on
Zero
""" | |
decoder_gs.py: Structured Latent Gaussian Decoder for 3D Representation Learning | |
This file contains decoder implementations that transform latent codes into 3D Gaussian | |
representations. The decoders use sparse transformer architectures for efficient processing | |
and flexible attention mechanisms. The main components are: | |
- SLatGaussianDecoder: Core decoder that maps latent codes to 3D Gaussians | |
- ElasticSLatGaussianDecoder: Memory-efficient variant with elastic memory management | |
""" | |
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ...modules import sparse as sp | |
from ...utils.random_utils import hammersley_sequence | |
from .base import SparseTransformerBase | |
from ...representations import Gaussian | |
from ..sparse_elastic_mixin import SparseTransformerElasticMixin | |
class SLatGaussianDecoder(SparseTransformerBase): | |
""" | |
Sparse Transformer-based decoder that converts latent codes to 3D Gaussian representations. | |
This decoder processes sparse tensors and outputs parameters for Gaussian primitives | |
that can be rendered in 3D space, including positions, features, scaling, rotation, | |
and opacity. | |
""" | |
def __init__( | |
self, | |
resolution: int, # The resolution of the 3D grid | |
model_channels: int, # Number of channels in the transformer layers | |
latent_channels: int, # Number of channels in the input latent code | |
num_blocks: int, # Number of transformer blocks | |
num_heads: Optional[int] = None, # Number of attention heads | |
num_head_channels: Optional[int] = 64, # Channels per attention head | |
mlp_ratio: float = 4, # Ratio for MLP size in transformer blocks | |
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", # Attention mechanism | |
window_size: int = 8, # Size of attention windows for windowed attention | |
pe_mode: Literal["ape", "rope"] = "ape", # Positional encoding mode | |
use_fp16: bool = False, # Whether to use half-precision | |
use_checkpoint: bool = False, # Whether to use gradient checkpointing | |
qk_rms_norm: bool = False, # Whether to use RMS normalization for attention | |
representation_config: dict = None, # Configuration for the Gaussian representation | |
): | |
super().__init__( | |
in_channels=latent_channels, | |
model_channels=model_channels, | |
num_blocks=num_blocks, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
mlp_ratio=mlp_ratio, | |
attn_mode=attn_mode, | |
window_size=window_size, | |
pe_mode=pe_mode, | |
use_fp16=use_fp16, | |
use_checkpoint=use_checkpoint, | |
qk_rms_norm=qk_rms_norm, | |
) | |
self.resolution = resolution | |
self.rep_config = representation_config | |
self._calc_layout() # Calculate output tensor layout | |
self.out_layer = sp.SparseLinear(model_channels, self.out_channels) # Final projection layer | |
self._build_perturbation() # Build position perturbation for better initialization | |
self.initialize_weights() | |
if use_fp16: | |
self.convert_to_fp16() | |
def initialize_weights(self) -> None: | |
""" | |
Initialize model weights, with special handling for output layers. | |
Zero-initializes the output layer for stability. | |
""" | |
super().initialize_weights() | |
# Zero-out output layers: | |
nn.init.constant_(self.out_layer.weight, 0) | |
nn.init.constant_(self.out_layer.bias, 0) | |
def _build_perturbation(self) -> None: | |
""" | |
Build position perturbation for Gaussian means. | |
Uses Hammersley sequence for quasi-random uniform distribution of points, | |
then transforms to match the desired Gaussian spatial distribution. | |
""" | |
perturbation = [hammersley_sequence(3, i, self.rep_config['num_gaussians']) for i in range(self.rep_config['num_gaussians'])] | |
perturbation = torch.tensor(perturbation).float() * 2 - 1 # Scale to [-1, 1] | |
perturbation = perturbation / self.rep_config['voxel_size'] # Scale by voxel size | |
perturbation = torch.atanh(perturbation).to(self.device) # Apply inverse tanh for better gradient flow | |
self.register_buffer('offset_perturbation', perturbation) # Register as buffer (not a parameter) | |
def _calc_layout(self) -> None: | |
""" | |
Calculate the layout of the output tensor. | |
Defines the shape and size of each Gaussian parameter group (position, features, scaling, rotation, opacity) | |
and their positions in the output tensor. | |
""" | |
self.layout = { | |
'_xyz' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3}, | |
'_features_dc' : {'shape': (self.rep_config['num_gaussians'], 1, 3), 'size': self.rep_config['num_gaussians'] * 3}, | |
'_scaling' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3}, | |
'_rotation' : {'shape': (self.rep_config['num_gaussians'], 4), 'size': self.rep_config['num_gaussians'] * 4}, | |
'_opacity' : {'shape': (self.rep_config['num_gaussians'], 1), 'size': self.rep_config['num_gaussians']}, | |
} | |
# Calculate ranges for each parameter group in the flattened output tensor | |
start = 0 | |
for k, v in self.layout.items(): | |
v['range'] = (start, start + v['size']) | |
start += v['size'] | |
self.out_channels = start # Total number of output channels | |
def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]: | |
""" | |
Convert a batch of network outputs to 3D Gaussian representations. | |
Args: | |
x: The [N x * x C] sparse tensor output by the network. | |
Returns: | |
list of Gaussian representations, one per batch item | |
""" | |
ret = [] | |
for i in range(x.shape[0]): | |
# Create a new Gaussian representation object with proper configuration | |
representation = Gaussian( | |
sh_degree=0, # No spherical harmonics, just using DC term | |
aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0], # Axis-aligned bounding box | |
mininum_kernel_size = self.rep_config['3d_filter_kernel_size'], | |
scaling_bias = self.rep_config['scaling_bias'], | |
opacity_bias = self.rep_config['opacity_bias'], | |
scaling_activation = self.rep_config['scaling_activation'] | |
) | |
# Get base positions from sparse tensor coordinates | |
xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution | |
# Process each parameter group | |
for k, v in self.layout.items(): | |
if k == '_xyz': | |
# Handle positions with special perturbation logic | |
offset = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']) | |
offset = offset * self.rep_config['lr'][k] # Apply learning rate scale | |
if self.rep_config['perturb_offset']: | |
offset = offset + self.offset_perturbation # Add perturbation | |
# Transform offsets through tanh and scale appropriately | |
offset = torch.tanh(offset) / self.resolution * 0.5 * self.rep_config['voxel_size'] | |
_xyz = xyz.unsqueeze(1) + offset | |
setattr(representation, k, _xyz.flatten(0, 1)) | |
else: | |
# Handle other parameters (features, scaling, rotation, opacity) | |
feats = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']).flatten(0, 1) | |
feats = feats * self.rep_config['lr'][k] # Apply parameter-specific learning rate | |
setattr(representation, k, feats) | |
ret.append(representation) | |
return ret | |
def forward(self, x: sp.SparseTensor) -> List[Gaussian]: | |
""" | |
Forward pass through the decoder. | |
Args: | |
x: Input sparse tensor containing latent codes | |
Returns: | |
List of Gaussian representations ready for rendering | |
""" | |
h = super().forward(x) # Process through transformer blocks | |
h = h.type(x.dtype) # Ensure consistent dtype | |
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) # Apply layer normalization | |
h = self.out_layer(h) # Project to final output dimensions | |
return self.to_representation(h) # Convert to Gaussian representations | |
class ElasticSLatGaussianDecoder(SparseTransformerElasticMixin, SparseTransformerBase): | |
""" | |
Slat VAE Gaussian decoder with elastic memory management. | |
Used for training with low VRAM by dynamically managing memory allocations | |
and using efficient sparse operations. | |
""" | |
pass | |