ojas121's picture
Update app.py
a9f8ee6 verified
raw
history blame
3.11 kB
import os
import subprocess
import streamlit as st
import librosa
import librosa.display
import numpy as np
import matplotlib.pyplot as plt
import soundfile as sf
import wave
import json
from vosk import Model, KaldiRecognizer
from transformers import pipeline
from huggingface_hub import snapshot_download
from pydub import AudioSegment
import noisereduce as nr
# βœ… Auto-Download Vosk Model (Speech-to-Text)
VOSK_MODEL = "vosk-model-small-en-us-0.15"
if not os.path.exists(VOSK_MODEL):
st.write("Downloading Vosk Model...")
subprocess.run(["wget", "-O", "vosk.zip", "https://alphacephei.com/vosk/models/vosk-model-small-en-us-0.15.zip"])
subprocess.run(["unzip", "vosk.zip"])
subprocess.run(["rm", "vosk.zip"])
# Load Vosk model
model = Model(VOSK_MODEL)
# βœ… Auto-Download Wav2Vec2 Model (Emotion Detection)
WAV2VEC_MODEL = "superb/wav2vec2-large-xlsr-53"
if not os.path.exists(WAV2VEC_MODEL):
st.write(f"Downloading {WAV2VEC_MODEL}...")
snapshot_download(repo_id=WAV2VEC_MODEL, local_dir=WAV2VEC_MODEL)
# Load emotion detection model
emotion_model = pipeline("audio-classification", model=WAV2VEC_MODEL)
# βœ… Streamlit UI
st.title("πŸŽ™οΈ Speech Detection System using Mozilla Common Voice")
st.write("Upload an audio file and get real-time speech-to-text, noise filtering, and emotion analysis.")
uploaded_file = st.file_uploader("Upload an MP3/WAV file", type=["mp3", "wav"])
if uploaded_file:
# Convert MP3 to WAV if needed
file_path = f"temp/{uploaded_file.name}"
os.makedirs("temp", exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
if file_path.endswith(".mp3"):
wav_path = file_path.replace(".mp3", ".wav")
audio = AudioSegment.from_mp3(file_path)
audio.export(wav_path, format="wav")
file_path = wav_path
# Load audio
y, sr = librosa.load(file_path, sr=16000)
# Display waveform
fig, ax = plt.subplots(figsize=(10, 4))
librosa.display.waveshow(y, sr=sr, ax=ax)
st.pyplot(fig)
# βœ… Noise Reduction
y_denoised = nr.reduce_noise(y=y, sr=sr)
denoised_path = file_path.replace(".wav", "_denoised.wav")
sf.write(denoised_path, y_denoised, sr)
# βœ… Speech-to-Text using Vosk
def transcribe_audio(audio_path):
wf = wave.open(audio_path, "rb")
rec = KaldiRecognizer(model, wf.getframerate())
while True:
data = wf.readframes(4000)
if len(data) == 0:
break
if rec.AcceptWaveform(data):
result = json.loads(rec.Result())
return result["text"]
transcription = transcribe_audio(file_path)
st.subheader("πŸ“ Transcribed Text:")
st.write(transcription)
# βœ… Emotion Detection
emotion_result = emotion_model(file_path)
st.subheader("😊 Emotion Analysis:")
st.write(emotion_result)
# βœ… Play Original & Denoised Audio
st.audio(file_path, format="audio/wav", start_time=0)
st.subheader("πŸ”Š Denoised Audio:")
st.audio(denoised_path, format="audio/wav", start_time=0)