File size: 14,750 Bytes
f9dbb85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from flask import Flask, request, jsonify
from flask_cors import CORS
import os
import json
import re
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import torch
from typing import List, Dict
import random
import datetime
from fuzzywuzzy import fuzz
app = Flask(__name__)
CORS(app)
class EnhancedMultilingualEidQABot:
def __init__(self, data_file='dataSet.json'):
print("🔄 Loading multilingual models...")
self.bi_encoder = None
self.cross_encoder = None
print("📖 Processing dataset...")
self.data = self._load_dataset(data_file)
self.knowledge_chunks = self._create_chunks()
self.chunk_embeddings = None
self.question_patterns = self._initialize_question_patterns()
print("✅ Bot ready!\n")
def _ensure_embeddings(self):
if self.chunk_embeddings is None:
self._load_models()
print("🧠 Creating embeddings...")
self.chunk_embeddings = self.bi_encoder.encode(
[chunk['text'] for chunk in self.knowledge_chunks],
convert_to_tensor=True,
show_progress_bar=True
)
def _load_dataset(self, data_file):
try:
with open(data_file, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Error loading dataset: {e}")
return []
def _create_chunks(self):
chunks = []
for item in self.data:
text = item['text']
tag = item.get('tag', 'General')
chunks.append({
'text': text,
'tag': tag,
'type': 'original',
'score_boost': 1.0
})
if 'eid' in text.lower() or 'عید' in text:
chunks.append({
'text': f"Eid information: {text}",
'tag': tag,
'type': 'enhanced',
'score_boost': 1.1
})
if 'prayer' in text.lower() or 'نماز' in text:
chunks.append({
'text': f"Prayer information: {text}",
'tag': tag,
'type': 'enhanced',
'score_boost': 1.2
})
if 'qurbani' in text.lower() or 'قربانی' in text or 'sacrifice' in text.lower():
chunks.append({
'text': f"Qurbani rules: {text}",
'tag': tag,
'type': 'enhanced',
'score_boost': 1.2
})
if 'funny' in tag.lower() or 'shair' in tag.lower():
chunks.append({
'text': f"Fun fact: {text}",
'tag': tag,
'type': 'enhanced',
'score_boost': 0.9
})
if 'gaza' in text.lower() or 'غزہ' in text:
chunks.append({
'text': f"Gaza context: {text}",
'tag': tag,
'type': 'enhanced',
'score_boost': 1.3
})
return chunks
def _load_models(self):
if self.bi_encoder is None:
print("🔄 Loading bi-encoder model...")
self.bi_encoder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
if self.cross_encoder is None:
print("🔄 Loading cross-encoder model...")
self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
def _initialize_question_patterns(self):
return {
'greeting': ['eid mubarak', 'عید مبارک', 'hello', 'hi', 'salaam', 'سلام', 'mubarak', 'eid maz', 'eid mub', 'id mubarak'],
'prayer': ['namaz', 'prayer', 'salah', 'eid ki namaz', 'نماز', 'how to pray', 'kaise parhein', 'nmaz', 'nmax', 'namaaz', 'salat'],
'qurbani': ['qurbani', 'sacrifice', 'bakra', 'janwar', 'قربانی', 'ذبح', 'qurbni', 'kurbani', 'sacrifise'],
'rules': ['rules', 'ahkam', 'قوانین', 'kya karna', 'what to do', 'kaise karna', 'rulez', 'ahkaam'],
'time': ['time', 'waqt', 'kab', 'وقت', 'when', 'konsa din', 'kab hai'],
'story': ['story', 'kahani', 'ibrahim', 'ismail', 'قصہ', 'واقعہ', 'history', 'kahaniya'],
'food': ['food', 'khana', 'mithai', 'کھانا', 'سویاں', 'biryani', 'khane', 'meethi'],
'funny': ['funny', 'shair', 'mazah', 'مزاح', 'joke', 'shairi', 'شاعری', 'mazak', 'maza'],
'gaza': ['gaza', 'palestine', 'غزہ', 'فلسطین', 'war zone', 'gazah'],
'general': ['kya hai', 'what is', 'بتائیں', 'معلومات', 'eid kya', 'عید کیا', 'eid hai']
}
def _clean_input(self, text: str) -> str:
text = re.sub(r'\s+', ' ', text.strip().lower())
text = re.sub(r'[^\w\s؟!]', '', text) # Keep Urdu/English chars, spaces, and basic punctuation
return text
def _fuzzy_match(self, word: str, keywords: List[str]) -> bool:
return any(fuzz.ratio(word, keyword) > 80 for keyword in keywords)
def _detect_question_type(self, question: str) -> str:
cleaned_question = self._clean_input(question)
words = cleaned_question.split()
for category, keywords in self.question_patterns.items():
if any(self._fuzzy_match(word, keywords) for word in words):
return category
return 'general'
def _get_contextual_boost(self, chunk: Dict, question_type: str) -> float:
boost = chunk.get('score_boost', 1.0)
if question_type == 'greeting' and 'greeting' in chunk['tag'].lower():
boost *= 1.4
elif question_type == 'prayer' and 'prayer' in chunk['tag'].lower():
boost *= 1.3
elif question_type == 'qurbani' and ('qurbani' in chunk['tag'].lower() or 'sacrifice' in chunk['tag'].lower()):
boost *= 1.3
elif question_type == 'story' and 'story' in chunk['tag'].lower():
boost *= 1.2
elif question_type == 'funny' and 'funny' in chunk['tag'].lower():
boost *= 1.1
elif question_type == 'gaza' and 'gaza' in chunk['tag'].lower():
boost *= 1.3
return boost
def _is_time_sensitive(self, question: str) -> bool:
time_keywords = ['time', 'waqt', 'kab', 'وقت', 'when', 'konsa din', 'kab hai']
return any(self._fuzzy_match(word, time_keywords) for word in question.lower().split())
def answer_question(self, question: str) -> str:
self._load_models()
self._ensure_embeddings()
cleaned_question = self._clean_input(question)
if not cleaned_question:
return self._get_default_response('empty')
question_type = self._detect_question_type(cleaned_question)
question_embedding = self.bi_encoder.encode(cleaned_question, convert_to_tensor=True)
cos_scores = util.cos_sim(question_embedding, self.chunk_embeddings)[0]
boosted_scores = []
for i, score in enumerate(cos_scores):
boost = self._get_contextual_boost(self.knowledge_chunks[i], question_type)
boosted_scores.append(score * boost)
boosted_scores = torch.tensor(boosted_scores)
top_k = min(15, len(self.knowledge_chunks))
top_results = torch.topk(boosted_scores, k=top_k)
top_indices = top_results.indices.tolist()
top_chunks = [self.knowledge_chunks[i]['text'] for i in top_indices]
top_scores = top_results.values.tolist()
rerank_pairs = [(cleaned_question, chunk) for chunk in top_chunks]
rerank_scores = self.cross_encoder.predict(rerank_pairs)
combined_scores = []
for i, rerank_score in enumerate(rerank_scores):
combined_score = (rerank_score * 0.7) + (top_scores[i] * 0.3)
combined_scores.append(combined_score)
best_idx = max(range(len(combined_scores)), key=lambda i: combined_scores[i])
best_chunk = top_chunks[best_idx]
best_score = combined_scores[best_idx]
avg_score = sum(combined_scores) / len(combined_scores)
threshold = avg_score * 0.8
if best_score < threshold:
return self._get_default_response(question_type)
# Clean the response - remove prefixes like "Eid information:", "Prayer information:", etc.
response = best_chunk
prefixes_to_remove = [
"Eid information: ",
"Prayer information: ",
"Qurbani rules: ",
"Fun fact: ",
"Gaza context: "
]
for prefix in prefixes_to_remove:
if response.startswith(prefix):
response = response[len(prefix):]
break
if self._is_time_sensitive(cleaned_question):
current_date = datetime.datetime.now()
islamic_date = "10th Dhul-Hijjah" # Placeholder
response += f"\n\n🕒 آج {current_date.strftime('%B %d, %Y')} ہے۔ عید الاضحیٰ عام طور پر {islamic_date} کو ہوتی ہے۔"
response += "\n\n This is a demo. I'm working on this project, and its continuation depends on user feedback. Please share your suggestions by visiting our 'Contact Us' screen."
return response
def _get_default_response(self, question_type: str) -> str:
defaults = {
'greeting': "🌙Eid Mubarak! May Allah accept your prayers.",
'prayer': "🕌 Eid prayer is 2 rakahs with extra takbeerat. Consult scholars for details.",
'qurbani': "🐐 Qurbani is obligatory for those who meet nisab. The animal must be healthy.",
'rules': "📜 Qurbani rules: Animal age, health, and intention are key.",
'time': "⏰ Eid ul-Adha is from 10th to 12th Dhul-Hijjah.",
'story': "📖 Eid ul-Adha commemorates Prophet Ibrahim's (AS) sacrifice.",
'food': "🍲 Eid foods include sheer khurma, biryani, and sweets.",
'funny': "😄 Eid fun: Eat sweets, collect Eidi!",
'gaza': "🤲 Pray for the people of Gaza. They are in hardship.",
'empty': " Ask something about Eid!",
'general': "🌟I am your Eid Assistant, created by OCi Lab . I am currently in progress and have limited data, focusing on small fun activities for Eid. I will improve myself after Eid"
}
return defaults.get(question_type, defaults['general'])
def get_random_eid_fact(self) -> str:
facts = [chunk for chunk in self.knowledge_chunks if chunk['tag'] in ['Eid_Overview', 'Prophet_Story', 'Eid_Prayer', 'Qurbani_Rules']]
if facts:
fact_text = random.choice(facts)['text']
# Clean prefixes from random facts too
prefixes_to_remove = [
"Eid information: ",
"Prayer information: ",
"Qurbani rules: ",
"Fun fact: ",
"Gaza context: "
]
for prefix in prefixes_to_remove:
if fact_text.startswith(prefix):
fact_text = fact_text[len(prefix):]
break
return f"💡 {fact_text}"
return "🌙 Eid Mubarak!"
def get_random_greeting(self) -> str:
greetings = [chunk for chunk in self.knowledge_chunks if 'greeting' in chunk['tag'].lower()]
if greetings:
greeting_text = random.choice(greetings)['text']
# Clean prefixes from greetings too
prefixes_to_remove = [
"Eid information: ",
"Prayer information: ",
"Qurbani rules: ",
"Fun fact: ",
"Gaza context: "
]
for prefix in prefixes_to_remove:
if greeting_text.startswith(prefix):
greeting_text = greeting_text[len(prefix):]
break
return f"🎉 {greeting_text}"
return "🌙 Eid Mubarak!"
def get_random_shair(self) -> str:
shairs = [chunk for chunk in self.knowledge_chunks if 'funny_shair_o_shairi' in chunk['tag'].lower()]
if shairs:
shair_text = random.choice(shairs)['text']
# Clean prefixes from shairs too
prefixes_to_remove = [
"Eid information: ",
"Prayer information: ",
"Qurbani rules: ",
"Fun fact: ",
"Gaza context: "
]
for prefix in prefixes_to_remove:
if shair_text.startswith(prefix):
shair_text = shair_text[len(prefix):]
break
return f"😄 شاعری: {shair_text}"
return "😂 No shairi found, just Eid Mubarak!"
def get_contextual_info(self) -> str:
current_date = datetime.datetime.now()
islamic_date = "10th Dhul-Hijjah" # Placeholder
return f"🕒 {current_date.strftime('%B %d, %Y')}۔{islamic_date} "
# Instantiate the bot
bot = EnhancedMultilingualEidQABot('dataSet.json')
# Flask Routes
@app.route('/ask', methods=['POST'])
def ask_question():
try:
data = request.get_json()
question = data.get('question', '')
if not question:
return jsonify({'answer': bot._get_default_response('empty')})
answer = bot.answer_question(question)
return jsonify({'answer': answer})
except Exception as e:
return jsonify({'error': str(e), 'answer': 'Sorry, something went wrong!'})
@app.route('/random', methods=['GET'])
def random_fact():
fact = bot.get_random_eid_fact()
return jsonify({'answer': fact})
@app.route('/greet', methods=['GET'])
def random_greeting():
greeting = bot.get_random_greeting()
return jsonify({'answer': greeting})
@app.route('/shair', methods=['GET'])
def random_shair():
shair = bot.get_random_shair()
return jsonify({'answer': shair})
@app.route('/context', methods=['GET'])
def contextual_info():
info = bot.get_contextual_info()
return jsonify({'answer': info})
@app.route('/warmup', methods=['GET'])
def warmup():
try:
bot._load_models()
bot._ensure_embeddings()
return jsonify({'status': 'Models warmed up and embeddings ready.'})
except Exception as e:
return jsonify({'error': str(e)})
if __name__ == '__main__':
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port)
|