app.py
CHANGED
@@ -6,8 +6,6 @@ from enum import Enum, auto
|
|
6 |
import torch
|
7 |
from transformers import AutoTokenizer, pipeline
|
8 |
import spaces
|
9 |
-
import concurrent.futures
|
10 |
-
import time
|
11 |
|
12 |
# ロガーの設定
|
13 |
logging.basicConfig(
|
@@ -162,152 +160,32 @@ def classify_text_api(model_id, text):
|
|
162 |
logger.error(f"Error in API classification with {model_id}: {str(e)}")
|
163 |
return f"Error: {str(e)}"
|
164 |
|
165 |
-
@spaces.GPU
|
166 |
-
def parallel_text_generation(model_paths, texts):
|
167 |
-
"""複数のローカルモデルを一度のGPU割り当てで実行するための最適化関数"""
|
168 |
-
try:
|
169 |
-
logger.info(f"Running parallel text generation for {len(model_paths)} models")
|
170 |
-
results = {}
|
171 |
-
|
172 |
-
# 各モデルのパイプラインが既にロードされている前提で実行
|
173 |
-
for i, (model_path, text) in enumerate(zip(model_paths, texts)):
|
174 |
-
try:
|
175 |
-
logger.info(f"Processing model {i+1}/{len(model_paths)}: {model_path}")
|
176 |
-
outputs = pipelines[model_path](
|
177 |
-
text,
|
178 |
-
max_new_tokens=40,
|
179 |
-
do_sample=False,
|
180 |
-
num_return_sequences=1
|
181 |
-
)
|
182 |
-
results[model_path] = outputs[0]["generated_text"]
|
183 |
-
except Exception as e:
|
184 |
-
logger.error(f"Error in text generation with {model_path}: {str(e)}")
|
185 |
-
results[model_path] = f"Error: {str(e)}"
|
186 |
-
|
187 |
-
return results
|
188 |
-
except Exception as e:
|
189 |
-
logger.error(f"Error in parallel text generation: {str(e)}")
|
190 |
-
return {model_path: f"Error: {str(e)}" for model_path in model_paths}
|
191 |
-
|
192 |
-
@spaces.GPU
|
193 |
-
def parallel_text_classification(model_paths, texts):
|
194 |
-
"""複数のローカル分類モデルを一度のGPU割り当てで実行するための最適化関数"""
|
195 |
-
try:
|
196 |
-
logger.info(f"Running parallel text classification for {len(model_paths)} models")
|
197 |
-
results = {}
|
198 |
-
|
199 |
-
# 各モデルのパイプラインが既にロードされている前提で実行
|
200 |
-
for i, (model_path, text) in enumerate(zip(model_paths, texts)):
|
201 |
-
try:
|
202 |
-
logger.info(f"Processing classification model {i+1}/{len(model_paths)}: {model_path}")
|
203 |
-
result = pipelines[model_path](text)
|
204 |
-
results[model_path] = str(result)
|
205 |
-
except Exception as e:
|
206 |
-
logger.error(f"Error in classification with {model_path}: {str(e)}")
|
207 |
-
results[model_path] = f"Error: {str(e)}"
|
208 |
-
|
209 |
-
return results
|
210 |
-
except Exception as e:
|
211 |
-
logger.error(f"Error in parallel text classification: {str(e)}")
|
212 |
-
return {model_path: f"Error: {str(e)}" for model_path in model_paths}
|
213 |
-
|
214 |
# Invokeボタンのハンドラ
|
215 |
def handle_invoke(text, selected_types):
|
216 |
-
"""Invokeボタンのハンドラ
|
217 |
-
|
218 |
-
logger.info("Starting parallel model execution")
|
219 |
-
|
220 |
-
# 結果を格納する配列(順番を保持するため、最初に空の配列を作成)
|
221 |
-
results = [""] * (len(TEXT_GENERATION_MODELS) + len(CLASSIFICATION_MODELS))
|
222 |
-
|
223 |
-
# ローカルの生成モデルを一括処理するための準備
|
224 |
-
local_gen_models = []
|
225 |
-
local_gen_texts = []
|
226 |
-
local_gen_indices = []
|
227 |
|
228 |
-
#
|
229 |
-
|
230 |
-
local_cls_texts = []
|
231 |
-
local_cls_indices = []
|
232 |
-
|
233 |
-
# APIモデルとその他のタスク
|
234 |
-
api_tasks = []
|
235 |
-
|
236 |
-
# テキスト生成モデルの分類
|
237 |
-
for i, model in enumerate(TEXT_GENERATION_MODELS):
|
238 |
if model["type"] in selected_types:
|
239 |
if model["type"] == LOCAL:
|
240 |
-
|
241 |
-
local_gen_texts.append(text)
|
242 |
-
local_gen_indices.append(i)
|
243 |
else: # api
|
244 |
-
|
|
|
245 |
|
246 |
-
#
|
247 |
-
for
|
248 |
-
idx = i + len(TEXT_GENERATION_MODELS)
|
249 |
if model["type"] in selected_types:
|
250 |
if model["type"] == LOCAL:
|
251 |
-
|
252 |
-
local_cls_texts.append(text)
|
253 |
-
local_cls_indices.append(idx)
|
254 |
else: # api
|
255 |
-
api_tasks.append((idx, model, "cls_api"))
|
256 |
-
|
257 |
-
# APIタスクを処理する関数
|
258 |
-
def process_api_task(task_data):
|
259 |
-
idx, model, task_type = task_data
|
260 |
-
try:
|
261 |
-
if task_type == "gen_api":
|
262 |
-
result = generate_text_api(model["model_id"], text)
|
263 |
-
return idx, f"{model['name']}: {result}"
|
264 |
-
elif task_type == "cls_api":
|
265 |
result = classify_text_api(model["model_id"], text)
|
266 |
-
|
267 |
-
except Exception as e:
|
268 |
-
logger.error(f"Error in {model['name']}: {str(e)}")
|
269 |
-
return idx, f"{model['name']}: Error - {str(e)}"
|
270 |
-
|
271 |
-
# API処理を並列実行
|
272 |
-
futures = []
|
273 |
-
if api_tasks:
|
274 |
-
with concurrent.futures.ThreadPoolExecutor(max_workers=len(api_tasks)) as executor:
|
275 |
-
futures = [executor.submit(process_api_task, task) for task in api_tasks]
|
276 |
-
|
277 |
-
# ローカル生成モデルを並列処理
|
278 |
-
if local_gen_models:
|
279 |
-
try:
|
280 |
-
local_gen_results = parallel_text_generation(local_gen_models, local_gen_texts)
|
281 |
-
for model_path, idx in zip(local_gen_models, local_gen_indices):
|
282 |
-
model_name = next(m["name"] for m in TEXT_GENERATION_MODELS if m["model_path"] == model_path)
|
283 |
-
results[idx] = f"{model_name}: {local_gen_results[model_path]}"
|
284 |
-
except Exception as e:
|
285 |
-
logger.error(f"Error in parallel text generation: {str(e)}")
|
286 |
-
for model_path, idx in zip(local_gen_models, local_gen_indices):
|
287 |
-
model_name = next(m["name"] for m in TEXT_GENERATION_MODELS if m["model_path"] == model_path)
|
288 |
-
results[idx] = f"{model_name}: Error - {str(e)}"
|
289 |
-
|
290 |
-
# ローカル分類モデルを並列処理
|
291 |
-
if local_cls_models:
|
292 |
-
try:
|
293 |
-
local_cls_results = parallel_text_classification(local_cls_models, local_cls_texts)
|
294 |
-
for model_path, idx in zip(local_cls_models, local_cls_indices):
|
295 |
-
model_name = next(m["name"] for m in CLASSIFICATION_MODELS if m["model_path"] == model_path)
|
296 |
-
results[idx] = f"{model_name}: {local_cls_results[model_path]}"
|
297 |
-
except Exception as e:
|
298 |
-
logger.error(f"Error in parallel text classification: {str(e)}")
|
299 |
-
for model_path, idx in zip(local_cls_models, local_cls_indices):
|
300 |
-
model_name = next(m["name"] for m in CLASSIFICATION_MODELS if m["model_path"] == model_path)
|
301 |
-
results[idx] = f"{model_name}: Error - {str(e)}"
|
302 |
-
|
303 |
-
# APIタスクの結果を収集
|
304 |
-
for future in concurrent.futures.as_completed(futures):
|
305 |
-
idx, result = future.result()
|
306 |
-
results[idx] = result
|
307 |
|
308 |
-
#
|
309 |
-
|
310 |
-
|
311 |
|
312 |
return results
|
313 |
|
|
|
6 |
import torch
|
7 |
from transformers import AutoTokenizer, pipeline
|
8 |
import spaces
|
|
|
|
|
9 |
|
10 |
# ロガーの設定
|
11 |
logging.basicConfig(
|
|
|
160 |
logger.error(f"Error in API classification with {model_id}: {str(e)}")
|
161 |
return f"Error: {str(e)}"
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
# Invokeボタンのハンドラ
|
164 |
def handle_invoke(text, selected_types):
|
165 |
+
"""Invokeボタンのハンドラ"""
|
166 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
# テキスト生成モデルの実行
|
169 |
+
for model in TEXT_GENERATION_MODELS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
if model["type"] in selected_types:
|
171 |
if model["type"] == LOCAL:
|
172 |
+
result = generate_text_local(model["model_path"], text)
|
|
|
|
|
173 |
else: # api
|
174 |
+
result = generate_text_api(model["model_id"], text)
|
175 |
+
results.append(f"{model['name']}: {result}")
|
176 |
|
177 |
+
# 分類モデルの実行
|
178 |
+
for model in CLASSIFICATION_MODELS:
|
|
|
179 |
if model["type"] in selected_types:
|
180 |
if model["type"] == LOCAL:
|
181 |
+
result = classify_text_local(model["model_path"], text)
|
|
|
|
|
182 |
else: # api
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
result = classify_text_api(model["model_id"], text)
|
184 |
+
results.append(f"{model['name']}: {result}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
# 結果リストの長さを調整
|
187 |
+
while len(results) < len(TEXT_GENERATION_MODELS) + len(CLASSIFICATION_MODELS):
|
188 |
+
results.append("")
|
189 |
|
190 |
return results
|
191 |
|