Update app.py
Browse files
app.py
CHANGED
@@ -1,112 +1,177 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
-
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
4 |
-
from langchain_community.llms import HuggingFaceHub
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
-
from
|
8 |
-
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
Chat History:
|
42 |
-
{chat_history}
|
43 |
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
search_kwargs={"k": 2}
|
56 |
-
)
|
57 |
|
|
|
|
|
58 |
memory = ConversationBufferMemory(
|
59 |
-
llm=hf_hub_llm,
|
60 |
-
output_key="answer",
|
61 |
memory_key="chat_history",
|
62 |
-
return_messages=True
|
|
|
63 |
)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
memory=memory,
|
70 |
-
|
71 |
-
|
|
|
72 |
)
|
73 |
-
return chain
|
74 |
-
|
75 |
-
# Streamlit App
|
76 |
-
st.set_page_config(
|
77 |
-
page_title="Asisten Kesehatan Wanita",
|
78 |
-
page_icon="💊",
|
79 |
-
layout="centered"
|
80 |
-
)
|
81 |
-
|
82 |
-
st.title("💊 Asisten Kesehatan Wanita")
|
83 |
-
|
84 |
-
if "chat_history" not in st.session_state:
|
85 |
-
st.session_state.chat_history = []
|
86 |
-
|
87 |
-
if "vectorstore" not in st.session_state:
|
88 |
-
st.session_state.vectorstore = setup_vectorstore()
|
89 |
-
|
90 |
-
if "conversational_chain" not in st.session_state:
|
91 |
-
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore)
|
92 |
-
|
93 |
-
# Display Chat History
|
94 |
-
for message in st.session_state.chat_history:
|
95 |
-
with st.chat_message(message["role"]):
|
96 |
-
st.markdown(message["content"])
|
97 |
-
|
98 |
-
# User Input
|
99 |
-
user_input = st.chat_input("Tanyakan sesuatu...")
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
from langchain_community.vectorstores import Chroma
|
4 |
+
from langchain_community.llms import HuggingFaceHub
|
|
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
+
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
import warnings
|
9 |
+
import os
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Constants and configurations
|
16 |
+
APP_TITLE = "💊 Asisten Kesehatan Feminacare"
|
17 |
+
INITIAL_MESSAGE = """Halo! 👋 Saya adalah asisten kesehatan feminacare yang siap membantu Anda dengan informasi seputar kesehatan wanita.
|
18 |
+
Silakan ajukan pertanyaan apa saja dan saya akan membantu Anda dengan informasi yang akurat."""
|
19 |
+
|
20 |
+
# Model configurations
|
21 |
+
MODEL_NAME = "meta-llama/Meta-Llama-3-8B-Instruct"
|
22 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
23 |
+
TOP_K_DOCS = 5
|
24 |
+
|
25 |
+
def initialize_models():
|
26 |
+
"""Initialize the embedding model and vector store"""
|
27 |
+
data_directory = os.path.join(os.path.dirname(__file__), "vector_db_dir")
|
28 |
+
embedding_model = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
29 |
+
vector_store = Chroma(
|
30 |
+
embedding_function=embedding_model,
|
31 |
+
persist_directory=data_directory
|
32 |
+
)
|
33 |
+
return vector_store
|
34 |
+
|
35 |
+
def create_llm():
|
36 |
+
"""Initialize the language model with optimized parameters"""
|
37 |
+
return HuggingFaceHub(
|
38 |
+
repo_id=MODEL_NAME,
|
39 |
+
model_kwargs={
|
40 |
+
"temperature": 0.7, # Balanced between creativity and accuracy
|
41 |
+
"max_new_tokens": 1024,
|
42 |
+
"top_p": 0.9,
|
43 |
+
"frequency_penalty": 0.5
|
44 |
+
}
|
45 |
)
|
46 |
|
47 |
+
# Improved prompt template with better context handling and response structure
|
48 |
+
PROMPT_TEMPLATE = """
|
49 |
+
Anda adalah asisten kesehatan profesional dengan nama Feminacare.
|
50 |
+
Berikan informasi yang akurat, jelas, dan bermanfaat berdasarkan konteks yang tersedia.
|
|
|
|
|
51 |
|
52 |
+
Context yang tersedia:
|
53 |
+
{context}
|
54 |
|
55 |
+
Chat historyt:
|
56 |
+
{chat_history}
|
57 |
|
58 |
+
Question: {question}
|
59 |
|
60 |
+
Instruksi untuk menjawab:
|
61 |
+
1. Berikan jawaban yang LENGKAP dan TERSTRUKTUR
|
62 |
+
2. Selalu sertakan SUMBER informasi dari konteks yang diberikan
|
63 |
+
3. Jika informasi tidak tersedia dalam konteks, katakan: "Maaf, saya tidak memiliki informasi yang cukup untuk menjawab pertanyaan tersebut secara akurat. Silakan konsultasi dengan tenaga kesehatan untuk informasi lebih lanjut."
|
64 |
+
4. Gunakan bahasa yang mudah dipahami
|
65 |
+
5. Jika relevan, berikan poin-poin penting menggunakan format yang rapi
|
66 |
+
6. Akhiri dengan anjuran untuk konsultasi dengan tenaga kesehatan jika diperlukan
|
67 |
|
68 |
+
Answer:
|
69 |
+
"""
|
|
|
|
|
70 |
|
71 |
+
def setup_qa_chain(vector_store):
|
72 |
+
"""Set up the QA chain with improved configuration"""
|
73 |
memory = ConversationBufferMemory(
|
|
|
|
|
74 |
memory_key="chat_history",
|
75 |
+
return_messages=True,
|
76 |
+
output_key='answer'
|
77 |
)
|
78 |
+
|
79 |
+
custom_prompt = PromptTemplate(
|
80 |
+
template=PROMPT_TEMPLATE,
|
81 |
+
input_variables=["context", "question", "chat_history"]
|
82 |
+
)
|
83 |
+
|
84 |
+
return ConversationalRetrievalChain.from_llm(
|
85 |
+
llm=create_llm(),
|
86 |
+
retriever=vector_store.as_retriever(
|
87 |
+
# search_type="mmr", # Maximum Marginal Relevance for better diversity
|
88 |
+
# search_kwargs={"k": TOP_K_DOCS}
|
89 |
+
),
|
90 |
memory=memory,
|
91 |
+
# combine_docs_chain_kwargs={"prompt": custom_prompt},
|
92 |
+
return_source_documents=True,
|
93 |
+
# return_generated_question=True,
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
def initialize_session_state():
|
97 |
+
"""Initialize Streamlit session state"""
|
98 |
+
if "messages" not in st.session_state:
|
99 |
+
st.session_state.messages = [
|
100 |
+
{"role": "assistant", "content": INITIAL_MESSAGE}
|
101 |
+
]
|
102 |
+
if "qa_chain" not in st.session_state:
|
103 |
+
vector_store = initialize_models()
|
104 |
+
st.session_state.qa_chain = setup_qa_chain(vector_store)
|
105 |
+
|
106 |
+
def clear_chat():
|
107 |
+
"""Clear chat history and memory"""
|
108 |
+
st.session_state.messages = [
|
109 |
+
{"role": "assistant", "content": INITIAL_MESSAGE}
|
110 |
+
]
|
111 |
+
st.session_state.qa_chain.memory.clear()
|
112 |
+
|
113 |
+
def create_ui():
|
114 |
+
"""Create the Streamlit UI"""
|
115 |
+
st.set_page_config(page_title=APP_TITLE, page_icon="💊")
|
116 |
+
|
117 |
+
# Custom CSS for better UI
|
118 |
+
st.markdown("""
|
119 |
+
<style>
|
120 |
+
.stApp {
|
121 |
+
max-width: 1200px;
|
122 |
+
margin: 0 auto;
|
123 |
+
}
|
124 |
+
.stChat {
|
125 |
+
border-radius: 10px;
|
126 |
+
padding: 20px;
|
127 |
+
margin: 10px 0;
|
128 |
+
}
|
129 |
+
</style>
|
130 |
+
""", unsafe_allow_html=True)
|
131 |
+
|
132 |
+
st.title(APP_TITLE)
|
133 |
+
|
134 |
+
# Sidebar
|
135 |
+
with st.sidebar:
|
136 |
+
st.title("ℹ️ Tentang Aplikasi")
|
137 |
+
st.markdown("""
|
138 |
+
Asisten digital ini dirancang untuk membantu Anda untuk berkonsultasi tentang kesehatan wanita.
|
139 |
+
|
140 |
+
_Catatan: Informasi yang diberikan bersifat umum. Selalu konsultasikan dengan tenaga kesehatan untuk saran yang lebih spesifik._
|
141 |
+
""")
|
142 |
+
|
143 |
+
st.button('🗑️ Hapus Riwayat Chat', on_click=clear_chat)
|
144 |
+
|
145 |
+
def handle_user_input(prompt):
|
146 |
+
"""Handle user input and generate response"""
|
147 |
+
try:
|
148 |
+
with st.spinner("Sedang menyiapkan jawaban..."):
|
149 |
+
response = st.session_state.qa_chain({"question": prompt})
|
150 |
+
return response["answer"]
|
151 |
+
except Exception as e:
|
152 |
+
st.error("Maaf, terjadi kesalahan dalam memproses pertanyaan Anda. Silakan coba lagi.")
|
153 |
+
return None
|
154 |
+
|
155 |
+
def main():
|
156 |
+
initialize_session_state()
|
157 |
+
create_ui()
|
158 |
+
|
159 |
+
# Display chat messages
|
160 |
+
for message in st.session_state.messages:
|
161 |
+
with st.chat_message(message["role"]):
|
162 |
+
st.markdown(message["content"])
|
163 |
+
|
164 |
+
# Handle user input
|
165 |
+
if prompt := st.chat_input("Ketik pertanyaan Anda di sini..."):
|
166 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
167 |
+
with st.chat_message("user"):
|
168 |
+
st.markdown(prompt)
|
169 |
+
|
170 |
+
response = handle_user_input(prompt)
|
171 |
+
if response:
|
172 |
+
with st.chat_message("assistant"):
|
173 |
+
st.markdown(response)
|
174 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
main()
|