# import gradio as gr # import streamlit as st # import torch # import re # from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel # device='cpu' # encoder_checkpoint = "ydshieh/vit-gpt2-coco-en" # decoder_checkpoint = "ydshieh/vit-gpt2-coco-en" # model_checkpoint = "ydshieh/vit-gpt2-coco-eng" # feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) # tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) # model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) # def predict(image,max_length=64, num_beams=4): # input_image = Image.open(image) # model.eval() # pixel_values = feature_extractor(images=[input_image], return_tensors="pt").pixel_values # with torch.no_grad(): # output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences # preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) # preds = [pred.strip() for pred in preds] # return preds[0] # # image = image.convert('RGB') # # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) # # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] # # caption_ids = model.generate(image, max_length = max_length)[0] # # caption_text = clean_text(tokenizer.decode(caption_ids)) # # return caption_text # # st.title("Image to Text using Lora") # inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) # output = gr.outputs.Textbox(type="text",label="Captions") # description = "NTT Data Bilbao team" # title = "Image to Text using Lora" # interface = gr.Interface( # fn=predict, # description=description, # inputs = inputs, # theme="grass", # outputs=output, # title=title, # ) # interface.launch(debug=True) import torch import re import gradio as gr from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel device='cpu' encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" print("------------------------- 1 -------------------------\n") feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) print("------------------------- 2 -------------------------\n") tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint print("------------------------- 3 -------------------------\n") model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) print("------------------------- 4 -------------------------\n") def predict(image,max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(image, max_length = max_length)[0] caption_text = clean_text(tokenizer.decode(caption_ids)) return caption_text print("------------------------- 5 -------------------------\n") input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) output = gr.outputs.Textbox(type="auto",label="Captions") examples = [f"example{i}.jpg" for i in range(1,7)] print("------------------------- 6 -------------------------\n") title = "Image Captioning " description = "NTT Data" interface = gr.Interface( fn=predict, description=description, inputs = input, theme="grass", outputs=output, examples = examples, title=title, ) interface.launch(debug=True)