D0k-tor commited on
Commit
94c8468
·
1 Parent(s): 6b290bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -55,9 +55,13 @@ device='cpu'
55
  encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
56
  decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
57
  model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
 
58
  feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
59
- tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
 
 
60
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
 
61
 
62
 
63
  def predict(image,max_length=64, num_beams=4):
@@ -69,13 +73,13 @@ def predict(image,max_length=64, num_beams=4):
69
  return caption_text
70
 
71
 
72
-
73
  input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
74
  output = gr.outputs.Textbox(type="auto",label="Captions")
75
  examples = [f"example{i}.jpg" for i in range(1,7)]
76
-
77
  title = "Image Captioning "
78
- description = "Made by : shreyasdixit.tech"
79
  interface = gr.Interface(
80
 
81
  fn=predict,
 
55
  encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
56
  decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
57
  model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
58
+ print("------------------------- 1 -------------------------\n")
59
  feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
60
+ print("------------------------- 2 -------------------------\n")
61
+ tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint
62
+ print("------------------------- 3 -------------------------\n")
63
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
64
+ print("------------------------- 4 -------------------------\n")
65
 
66
 
67
  def predict(image,max_length=64, num_beams=4):
 
73
  return caption_text
74
 
75
 
76
+ print("------------------------- 5 -------------------------\n")
77
  input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
78
  output = gr.outputs.Textbox(type="auto",label="Captions")
79
  examples = [f"example{i}.jpg" for i in range(1,7)]
80
+ print("------------------------- 6 -------------------------\n")
81
  title = "Image Captioning "
82
+ description = "NTT Data"
83
  interface = gr.Interface(
84
 
85
  fn=predict,