D0k-tor commited on
Commit
57d4ed7
·
1 Parent(s): 355d287

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -11
app.py CHANGED
@@ -11,23 +11,32 @@ from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecode
11
  # iface.launch()
12
 
13
  device='cpu'
14
- encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
15
- decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
16
- model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
17
  feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
18
  tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
19
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
20
 
21
 
22
  def predict(image,max_length=64, num_beams=4):
23
- image = image.convert('RGB')
24
- image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
25
- clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
26
- caption_ids = model.generate(image, max_length = max_length)[0]
27
- caption_text = clean_text(tokenizer.decode(caption_ids))
28
- return caption_text
29
-
30
- st.title("Image to Text using Lora")
 
 
 
 
 
 
 
 
 
31
 
32
  inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
33
  output = gr.outputs.Textbox(type="text",label="Captions")
 
11
  # iface.launch()
12
 
13
  device='cpu'
14
+ encoder_checkpoint = "ydshieh/vit-gpt2-coco-en"
15
+ decoder_checkpoint = "ydshieh/vit-gpt2-coco-en"
16
+ model_checkpoint = "ydshieh/vit-gpt2-coco-eng"
17
  feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
18
  tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
19
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
20
 
21
 
22
  def predict(image,max_length=64, num_beams=4):
23
+ input_image = Image.open(image)
24
+ model.eval()
25
+ pixel_values = feature_extractor(images=[input_image], return_tensors="pt").pixel_values
26
+ with torch.no_grad():
27
+ output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
28
+ preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
29
+ preds = [pred.strip() for pred in preds]
30
+ return preds[0]
31
+
32
+ # image = image.convert('RGB')
33
+ # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
34
+ # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
35
+ # caption_ids = model.generate(image, max_length = max_length)[0]
36
+ # caption_text = clean_text(tokenizer.decode(caption_ids))
37
+ # return caption_text
38
+
39
+ # st.title("Image to Text using Lora")
40
 
41
  inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
42
  output = gr.outputs.Textbox(type="text",label="Captions")