Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,23 +11,32 @@ from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecode
|
|
11 |
# iface.launch()
|
12 |
|
13 |
device='cpu'
|
14 |
-
encoder_checkpoint = "
|
15 |
-
decoder_checkpoint = "
|
16 |
-
model_checkpoint = "
|
17 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
18 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
19 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
20 |
|
21 |
|
22 |
def predict(image,max_length=64, num_beams=4):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
33 |
output = gr.outputs.Textbox(type="text",label="Captions")
|
|
|
11 |
# iface.launch()
|
12 |
|
13 |
device='cpu'
|
14 |
+
encoder_checkpoint = "ydshieh/vit-gpt2-coco-en"
|
15 |
+
decoder_checkpoint = "ydshieh/vit-gpt2-coco-en"
|
16 |
+
model_checkpoint = "ydshieh/vit-gpt2-coco-eng"
|
17 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
18 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
19 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
20 |
|
21 |
|
22 |
def predict(image,max_length=64, num_beams=4):
|
23 |
+
input_image = Image.open(image)
|
24 |
+
model.eval()
|
25 |
+
pixel_values = feature_extractor(images=[input_image], return_tensors="pt").pixel_values
|
26 |
+
with torch.no_grad():
|
27 |
+
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
28 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
29 |
+
preds = [pred.strip() for pred in preds]
|
30 |
+
return preds[0]
|
31 |
+
|
32 |
+
# image = image.convert('RGB')
|
33 |
+
# image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
34 |
+
# clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
35 |
+
# caption_ids = model.generate(image, max_length = max_length)[0]
|
36 |
+
# caption_text = clean_text(tokenizer.decode(caption_ids))
|
37 |
+
# return caption_text
|
38 |
+
|
39 |
+
# st.title("Image to Text using Lora")
|
40 |
|
41 |
inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
42 |
output = gr.outputs.Textbox(type="text",label="Captions")
|