Spaces:
Runtime error
Runtime error
import torch | |
import re | |
import gradio as gr | |
import streamlit as st | |
# st.title("Image Caption Generator") | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
import os | |
import tensorflow as tf | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
print("------------------------- 1 -------------------------\n") | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
print("------------------------- 2 -------------------------\n") | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
print("------------------------- 3 -------------------------\n") | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
print("------------------------- 4 -------------------------\n") | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
print("------------------------- 5 -------------------------\n") | |
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
output = gr.outputs.Textbox(type="text",label="Captions") | |
examples = ["example1.jpg"] | |
print("------------------------- 6 -------------------------\n") | |
title = "Image to Text ViT with LORA" | |
# interface = gr.Interface( | |
# fn=predict, | |
# description=description, | |
# inputs = input, | |
# theme="grass", | |
# outputs=output, | |
# examples=examples, | |
# title=title, | |
# ) | |
# interface.launch(debug=True) | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 1200px; margin: 20px auto;"> | |
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem"> | |
TextDiffuser: Diffusion Models as Text Painters | |
</h1> | |
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
We propose <b>Image to Text</b>, with ViT model but with LORA fine-tuning. | |
</h2> | |
</div> | |
""") | |
gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
gr.outputs.Textbox(type="text",label="Captions") | |
# gr.Image(label="Upload any Image", type = 'pil', optional=True) | |
# gr.Textbox(type="text",label="Captions") | |
demo.launch() |