D0k-tor's picture
Update app.py
47fb79d
raw
history blame
2.02 kB
import torch
import re
import gradio as gr
import streamlit as st
# st.title("Image Caption Generator")
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
import os
import tensorflow as tf
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
device='cpu'
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
print("------------------------- 1 -------------------------\n")
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
print("------------------------- 2 -------------------------\n")
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
print("------------------------- 3 -------------------------\n")
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
print("------------------------- 4 -------------------------\n")
def predict(image,max_length=64, num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = model.generate(image, max_length = max_length)[0]
caption_text = clean_text(tokenizer.decode(caption_ids))
return caption_text
print("------------------------- 5 -------------------------\n")
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
output = gr.outputs.Textbox(type="text",label="Captions")
examples = ["example1.jpg"]
print("------------------------- 6 -------------------------\n")
# title = "Image to Text ViT with LORA"
description = """
# This is a Heading
This is a paragraph.
- Item 1
- Item 2
"""
interface = gr.Interface(
fn=predict,
description=description,
inputs = input,
theme="grass",
outputs=output,
examples = examples,
title=title,
)
interface.launch(debug=True)