D0k-tor's picture
Update app.py
355d287
raw
history blame
1.54 kB
import gradio as gr
import streamlit as st
import torch
import re
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
# def greet(name):
# return "Hello " + name + "!!"
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()
device='cpu'
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
def predict(image,max_length=64, num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = model.generate(image, max_length = max_length)[0]
caption_text = clean_text(tokenizer.decode(caption_ids))
return caption_text
st.title("Image to Text using Lora")
inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
output = gr.outputs.Textbox(type="text",label="Captions")
description = "NTT Data Bilbao team"
title = "Image to Text using Lora"
interface = gr.Interface(
fn=predict,
description=description,
inputs = inputs,
theme="grass",
outputs=output,
title=title,
)
interface.launch(debug=True)