Spaces:
Runtime error
Runtime error
import gradio as gr | |
import streamlit as st | |
import torch | |
import re | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
# def greet(name): | |
# return "Hello " + name + "!!" | |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# iface.launch() | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
st.title("Image to Text using Lora") | |
inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
output = gr.outputs.Textbox(type="text",label="Captions") | |
description = "NTT Data Bilbao team" | |
title = "Image to Text using Lora" | |
interface = gr.Interface( | |
fn=predict, | |
description=description, | |
inputs = inputs, | |
theme="grass", | |
outputs=output, | |
title=title, | |
) | |
interface.launch(debug=True) | |