Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
import tensorflow as tf | |
from tensorflow.keras.models import model_from_json | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import os | |
# Set environment variable to avoid oneDNN warnings | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
# Load model artifacts | |
def load_model_artifacts(): | |
try: | |
# Load from the same directory where training code saved artifacts | |
with open('model_architecture.json', 'r') as json_file: | |
model_json = json_file.read() | |
model = model_from_json(model_json) | |
model.load_weights('final_model.h5') | |
with open('scaler.pkl', 'rb') as f: | |
scaler = pickle.load(f) | |
with open('metadata.json', 'r') as f: | |
metadata = json.load(f) | |
return model, scaler, metadata | |
except Exception as e: | |
raise Exception(f"Error loading model artifacts: {str(e)}") | |
# Initialize model components | |
try: | |
model, scaler, metadata = load_model_artifacts() | |
feature_names = metadata['feature_names'] # Get feature names from metadata | |
print(f"β Model loaded successfully with features: {feature_names}") | |
except Exception as e: | |
print(f"β Error loading model: {e}") | |
model, scaler, metadata = None, None, {} | |
feature_names = ['Feature_1', 'Feature_2'] # Fallback if metadata not available | |
def predict_student_eligibility(*args): | |
try: | |
if model is None or scaler is None: | |
return "Model not loaded", "N/A", "N/A", create_error_plot() | |
# Create input dictionary with correct feature names | |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))} | |
input_df = pd.DataFrame([input_data]) | |
# Ensure columns are in correct order | |
input_df = input_df[feature_names] | |
# Scale and reshape input | |
input_scaled = scaler.transform(input_df) | |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1) | |
probability = float(model.predict(input_reshaped)[0][0]) | |
prediction = "Eligible" if probability > 0.5 else "Not Eligible" | |
confidence = abs(probability - 0.5) * 2 | |
fig = create_prediction_viz(probability, prediction, input_data) | |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig | |
except Exception as e: | |
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot() | |
def create_error_plot(): | |
fig = go.Figure() | |
fig.add_annotation( | |
text="Model not available or error occurred", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, xanchor='center', yanchor='middle', | |
showarrow=False, font=dict(size=20) | |
) | |
fig.update_layout( | |
xaxis={'visible': False}, | |
yaxis={'visible': False}, | |
height=400 | |
) | |
return fig | |
def create_prediction_viz(probability, prediction, input_data): | |
try: | |
fig = make_subplots( | |
rows=2, cols=2, | |
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'), | |
specs=[[{"type": "indicator"}, {"type": "indicator"}], | |
[{"type": "bar"}, {"type": "scatter"}]] | |
) | |
# Prediction probability gauge | |
fig.add_trace( | |
go.Indicator( | |
mode="gauge+number", | |
value=probability, | |
title={'text': "Eligibility Probability"}, | |
gauge={ | |
'axis': {'range': [None, 1]}, | |
'bar': {'color': "darkblue"}, | |
'steps': [ | |
{'range': [0, 0.5], 'color': "lightcoral"}, | |
{'range': [0.5, 1], 'color': "lightgreen"} | |
], | |
'threshold': { | |
'line': {'color': "red", 'width': 4}, | |
'thickness': 0.75, | |
'value': 0.5 | |
} | |
} | |
), row=1, col=1 | |
) | |
# Confidence meter | |
confidence = abs(probability - 0.5) * 2 | |
fig.add_trace( | |
go.Indicator( | |
mode="gauge+number", | |
value=confidence, | |
title={'text': "Prediction Confidence"}, | |
gauge={ | |
'axis': {'range': [None, 1]}, | |
'bar': {'color': "orange"}, | |
'steps': [ | |
{'range': [0, 0.3], 'color': "lightcoral"}, | |
{'range': [0.3, 0.7], 'color': "lightyellow"}, | |
{'range': [0.7, 1], 'color': "lightgreen"} | |
] | |
} | |
), row=1, col=2 | |
) | |
# Input features bar chart | |
features = list(input_data.keys()) | |
values = list(input_data.values()) | |
fig.add_trace( | |
go.Bar( | |
x=features, | |
y=values, | |
name="Input Values", | |
marker_color="skyblue", | |
text=values, | |
textposition='auto' | |
), | |
row=2, col=1 | |
) | |
# Probability distribution | |
fig.add_trace( | |
go.Scatter( | |
x=[0, 1], | |
y=[probability, probability], | |
mode='lines+markers', | |
name="Probability", | |
line=dict(color="red", width=3), | |
marker=dict(size=10) | |
), | |
row=2, col=2 | |
) | |
fig.update_layout( | |
height=800, | |
showlegend=False, | |
title_text="Student Eligibility Prediction Dashboard", | |
title_x=0.5, | |
margin=dict(l=50, r=50, t=100, b=50) | |
) | |
# Update x-axis for probability plot | |
fig.update_xaxes(title_text="", row=2, col=2, range=[-0.1, 1.1]) | |
fig.update_yaxes(title_text="Probability", row=2, col=2, range=[0, 1]) | |
return fig | |
except Exception as e: | |
return create_error_plot() | |
def batch_predict(file): | |
try: | |
if model is None or scaler is None: | |
return "Model not loaded. Please check if all model files are uploaded.", None | |
if file is None: | |
return "Please upload a CSV file.", None | |
df = pd.read_csv(file) | |
# Check for required features | |
missing_features = set(feature_names) - set(df.columns) | |
if missing_features: | |
return f"Missing features: {', '.join(missing_features)}", None | |
# Ensure correct column order | |
df_features = df[feature_names] | |
df_scaled = scaler.transform(df_features) | |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1) | |
probabilities = model.predict(df_reshaped).flatten() | |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities] | |
results_df = df.copy() | |
results_df['Probability'] = probabilities | |
results_df['Prediction'] = predictions | |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2 | |
output_file = "batch_predictions.csv" | |
results_df.to_csv(output_file, index=False) | |
eligible_count = predictions.count('Eligible') | |
not_eligible_count = predictions.count('Not Eligible') | |
summary = f"""Batch Prediction Summary: | |
βββββββββββββββββββββββββββββββββββββββββ | |
π Total predictions: {len(results_df)} | |
β Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%) | |
β Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%) | |
π Average Probability: {np.mean(probabilities):.4f} | |
π― Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f} | |
βββββββββββββββββββββββββββββββββββββββββ | |
Results saved to: {output_file} | |
""" | |
return summary, output_file | |
except Exception as e: | |
return f"Error processing file: {str(e)}", None | |
# Gradio UI | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π Student Eligibility Prediction") | |
gr.Markdown("This app predicts student eligibility based on academic performance metrics.") | |
with gr.Tabs(): | |
with gr.Tab("π Single Prediction"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [gr.Number(label=feature, value=75) for feature in feature_names] | |
predict_btn = gr.Button("Predict", variant="primary") | |
with gr.Column(): | |
prediction = gr.Textbox(label="Prediction") | |
probability = gr.Textbox(label="Probability") | |
confidence = gr.Textbox(label="Confidence") | |
plot = gr.Plot() | |
predict_btn.click( | |
predict_student_eligibility, | |
inputs=inputs, | |
outputs=[prediction, probability, confidence, plot] | |
) | |
with gr.Tab("π Batch Prediction"): | |
gr.Markdown("Upload a CSV file with student data to get batch predictions.") | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File( | |
label="Upload CSV", | |
file_types=[".csv"], | |
type="filepath" | |
) | |
batch_btn = gr.Button("Process Batch", variant="primary") | |
with gr.Column(): | |
batch_output = gr.Textbox(label="Results", lines=10) | |
download = gr.File(label="Download Predictions") | |
batch_btn.click( | |
batch_predict, | |
inputs=file_input, | |
outputs=[batch_output, download] | |
) | |
# Footer | |
gr.Markdown("---") | |
gr.Markdown("> Note: This model was trained on student eligibility data. Ensure your input features match the training data format.") | |
# Launch app | |
if __name__ == "__main__": | |
demo.launch() |