ntam0001's picture
Update app.py
ed024cc verified
raw
history blame
15.7 kB
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import load_model
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import os
# Load model artifacts
def load_model_artifacts():
try:
# Load the trained model
model = load_model('final_model.h5')
# Load the scaler
with open('scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
# Load metadata
with open('metadata.json', 'r') as f:
metadata = json.load(f)
return model, scaler, metadata
except Exception as e:
raise Exception(f"Error loading model artifacts: {str(e)}")
# Initialize model components
try:
model, scaler, metadata = load_model_artifacts()
feature_names = metadata['feature_names']
print(f"โœ… Model loaded successfully with features: {feature_names}")
except Exception as e:
print(f"โŒ Error loading model: {e}")
# Fallback values for testing
model, scaler, metadata = None, None, {}
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']
def predict_student_eligibility(*args):
"""
Predict student eligibility based on input features
"""
try:
if model is None or scaler is None:
return "Model not loaded", "N/A", "N/A", create_error_plot()
# Create input dictionary from gradio inputs
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
# Convert to DataFrame
input_df = pd.DataFrame([input_data])
# Scale the input
input_scaled = scaler.transform(input_df)
# Reshape for CNN
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
# Make prediction
probability = float(model.predict(input_reshaped)[0][0])
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
# Create prediction visualization
fig = create_prediction_viz(probability, prediction, input_data)
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
except Exception as e:
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
def create_error_plot():
"""Create a simple error plot"""
fig = go.Figure()
fig.add_annotation(
text="Model not available or error occurred",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=20)
)
fig.update_layout(
xaxis={'visible': False},
yaxis={'visible': False},
height=400
)
return fig
def create_prediction_viz(probability, prediction, input_data):
"""
Create visualization for prediction results
"""
try:
# Create subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
specs=[[{"type": "indicator"}, {"type": "indicator"}],
[{"type": "bar"}, {"type": "scatter"}]]
)
# Prediction probability gauge
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=probability,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "Eligibility Probability"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 0.5], 'color': "lightcoral"},
{'range': [0.5, 1], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.5
}
}
),
row=1, col=1
)
# Confidence meter
confidence = abs(probability - 0.5) * 2
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=confidence,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "Prediction Confidence"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "orange"},
'steps': [
{'range': [0, 0.3], 'color': "lightcoral"},
{'range': [0.3, 0.7], 'color': "lightyellow"},
{'range': [0.7, 1], 'color': "lightgreen"}
]
}
),
row=1, col=2
)
# Input features bar chart
features = list(input_data.keys())
values = list(input_data.values())
fig.add_trace(
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
row=2, col=1
)
# Simple probability visualization
fig.add_trace(
go.Scatter(
x=[0, 1],
y=[probability, probability],
mode='lines+markers',
name="Probability",
line=dict(color="red", width=3),
marker=dict(size=10)
),
row=2, col=2
)
fig.update_layout(
height=800,
showlegend=False,
title_text="Student Eligibility Prediction Dashboard",
title_x=0.5
)
return fig
except Exception as e:
return create_error_plot()
def create_model_info():
"""
Create model information display
"""
if metadata:
info_html = f"""
<div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;">
<h3>๐Ÿค– Model Information</h3>
<ul>
<li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li>
<li><strong>Test Accuracy:</strong> {metadata.get('performance_metrics', {}).get('test_accuracy', 'N/A')}</li>
<li><strong>AUC Score:</strong> {metadata.get('performance_metrics', {}).get('auc_score', 'N/A')}</li>
<li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li>
<li><strong>Features:</strong> {len(feature_names)} input features</li>
</ul>
</div>
"""
else:
info_html = """
<div style="padding: 20px; background-color: #ffebee; border-radius: 10px; margin: 10px 0;">
<h3>โš ๏ธ Model Information</h3>
<p>Model artifacts not loaded. Please ensure all required files are uploaded.</p>
</div>
"""
return info_html
def batch_predict(file):
"""
Batch prediction from uploaded CSV file
"""
try:
if model is None or scaler is None:
return "Model not loaded. Please check if all model files are uploaded.", None
if file is None:
return "Please upload a CSV file.", None
# Read the uploaded file
df = pd.read_csv(file.name)
# Check if all required features are present
missing_features = set(feature_names) - set(df.columns)
if missing_features:
return f"Missing features: {missing_features}", None
# Select only the required features
df_features = df[feature_names]
# Scale the features
df_scaled = scaler.transform(df_features)
# Reshape for CNN
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
# Make predictions
probabilities = model.predict(df_reshaped).flatten()
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
# Create results dataframe
results_df = df_features.copy()
results_df['Probability'] = probabilities
results_df['Prediction'] = predictions
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
# Save results
output_file = "batch_predictions.csv"
results_df.to_csv(output_file, index=False)
# Create summary statistics
eligible_count = sum(1 for p in predictions if p == 'Eligible')
not_eligible_count = len(predictions) - eligible_count
summary = f"""Batch Prediction Summary:
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
๐Ÿ“Š Total predictions: {len(results_df)}
โœ… Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%)
โŒ Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%)
๐Ÿ“ˆ Average Probability: {np.mean(probabilities):.4f}
๐ŸŽฏ Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
Results saved to: {output_file}
"""
return summary, output_file
except Exception as e:
return f"Error processing file: {str(e)}", None
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
title="Student Eligibility Prediction",
css="""
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
padding: 20px;
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.feature-input {
margin: 5px 0;
}
"""
) as demo:
# Header
gr.HTML("""
<div class="main-header">
<h1>๐ŸŽ“ Student Eligibility Prediction System</h1>
<p>AI-powered CNN model for predicting student eligibility with advanced analytics</p>
</div>
""")
with gr.Tabs():
# Single Prediction Tab
with gr.TabItem("๐Ÿ”ฎ Single Prediction"):
gr.Markdown("### Enter student information to predict eligibility")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Input Features")
# Create input components dynamically based on features
inputs = []
for i, feature in enumerate(feature_names):
inputs.append(
gr.Number(
label=f"๐Ÿ“Š {feature}",
value=75 + i*5, # Different default values
minimum=0,
maximum=100,
step=0.1,
elem_classes=["feature-input"]
)
)
predict_btn = gr.Button(
"๐Ÿ”ฎ Predict Eligibility",
variant="primary",
size="lg",
elem_id="predict-btn"
)
with gr.Column(scale=2):
gr.Markdown("#### Prediction Results")
with gr.Row():
prediction_output = gr.Textbox(label="๐ŸŽฏ Prediction", scale=1)
probability_output = gr.Textbox(label="๐Ÿ“Š Probability", scale=1)
confidence_output = gr.Textbox(label="๐ŸŽฏ Confidence", scale=1)
prediction_plot = gr.Plot(label="๐Ÿ“ˆ Prediction Visualization")
# Model information
gr.HTML(create_model_info())
# Batch Prediction Tab
with gr.TabItem("๐Ÿ“Š Batch Prediction"):
gr.Markdown("### Upload a CSV file for batch predictions")
gr.Markdown(f"**Required columns:** `{', '.join(feature_names)}`")
# Sample CSV format
gr.Markdown("""
**Example CSV format:**
```csv
Feature_1,Feature_2,Feature_3,Feature_4
85,90,75,88
92,78,85,91
```
""")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="๐Ÿ“ Upload CSV File",
file_types=[".csv"],
type="file"
)
batch_predict_btn = gr.Button(
"๐Ÿ“Š Process Batch",
variant="primary",
size="lg"
)
with gr.Column():
batch_output = gr.Textbox(
label="๐Ÿ“‹ Batch Results Summary",
lines=15,
max_lines=20
)
download_file = gr.File(label="โฌ‡๏ธ Download Results")
# Model Analytics Tab
with gr.TabItem("๐Ÿ“ˆ Model Analytics"):
gr.Markdown("### Model Performance Metrics")
if metadata and 'performance_metrics' in metadata:
# Performance metrics
metrics_data = metadata['performance_metrics']
metrics_df = pd.DataFrame([{
'Metric': k.replace('_', ' ').title(),
'Value': f"{v:.4f}" if isinstance(v, float) else str(v)
} for k, v in metrics_data.items()])
gr.Dataframe(
metrics_df,
label="๐ŸŽฏ Performance Metrics",
headers=['Metric', 'Value']
)
else:
gr.Markdown("โš ๏ธ **Performance metrics not available**")
# Feature information
gr.Markdown("### ๐Ÿ“Š Model Features")
feature_info = pd.DataFrame({
'Feature Name': feature_names,
'Index': range(len(feature_names)),
'Type': ['Numerical'] * len(feature_names)
})
gr.Dataframe(feature_info, label="Feature Information")
# Model architecture info
if metadata:
gr.Markdown("### ๐Ÿ—๏ธ Model Architecture")
arch_info = f"""
- **Model Type**: {metadata.get('model_type', 'CNN')}
- **Input Shape**: {metadata.get('input_shape', 'N/A')}
- **Total Features**: {len(feature_names)}
- **Output Classes**: {len(metadata.get('target_classes', {}))}
"""
gr.Markdown(arch_info)
# Event handlers
predict_btn.click(
fn=predict_student_eligibility,
inputs=inputs,
outputs=[prediction_output, probability_output, confidence_output, prediction_plot]
)
batch_predict_btn.click(
fn=batch_predict,
inputs=[file_input],
outputs=[batch_output, download_file]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860
)