Spaces:
Sleeping
Sleeping
File size: 8,236 Bytes
444ee18 f978017 444ee18 f978017 444ee18 8b11118 444ee18 8b11118 a915b02 f978017 444ee18 f978017 444ee18 f978017 444ee18 ed024cc f978017 ed024cc f978017 444ee18 ed024cc f978017 444ee18 f978017 ed024cc 444ee18 f978017 444ee18 f978017 444ee18 f978017 444ee18 ed024cc 444ee18 ed024cc f978017 ed024cc 444ee18 f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc f978017 ed024cc 444ee18 ed024cc f978017 ed024cc f978017 8b11118 444ee18 f978017 444ee18 f978017 444ee18 f978017 444ee18 f978017 444ee18 f978017 ed024cc f978017 ed024cc 444ee18 f978017 444ee18 f978017 444ee18 f978017 8b11118 444ee18 8b11118 f978017 8b11118 444ee18 8b11118 f978017 8b11118 f978017 8b11118 f978017 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
# Set environment variable to avoid oneDNN warnings
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Load model artifacts
def load_model_artifacts():
try:
with open('model_architecture.json', 'r') as json_file:
model_json = json_file.read()
model = model_from_json(model_json)
model.load_weights('final_model.h5')
with open('scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
with open('metadata.json', 'r') as f:
metadata = json.load(f)
return model, scaler, metadata
except Exception as e:
raise Exception(f"Error loading model artifacts: {str(e)}")
# Initialize model components
try:
model, scaler, metadata = load_model_artifacts()
# Use only two features for prediction
feature_names = ['Feature_1', 'Feature_2']
print(f"β
Model loaded successfully with features: {feature_names}")
except Exception as e:
print(f"β Error loading model: {e}")
model, scaler, metadata = None, None, {}
feature_names = ['Feature_1', 'Feature_2']
def predict_student_eligibility(*args):
try:
if model is None or scaler is None:
return "Model not loaded", "N/A", "N/A", create_error_plot()
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
input_df = pd.DataFrame([input_data])
input_scaled = scaler.transform(input_df)
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
probability = float(model.predict(input_reshaped)[0][0])
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
confidence = abs(probability - 0.5) * 2
fig = create_prediction_viz(probability, prediction, input_data)
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
except Exception as e:
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
def create_error_plot():
fig = go.Figure()
fig.add_annotation(
text="Model not available or error occurred",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=20)
)
fig.update_layout(
xaxis={'visible': False},
yaxis={'visible': False},
height=400
)
return fig
def create_prediction_viz(probability, prediction, input_data):
try:
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
specs=[[{"type": "indicator"}, {"type": "indicator"}],
[{"type": "bar"}, {"type": "scatter"}]]
)
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=probability,
title={'text': "Eligibility Probability"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 0.5], 'color': "lightcoral"},
{'range': [0.5, 1], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.5
}
}
), row=1, col=1
)
confidence = abs(probability - 0.5) * 2
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=confidence,
title={'text': "Prediction Confidence"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "orange"},
'steps': [
{'range': [0, 0.3], 'color': "lightcoral"},
{'range': [0.3, 0.7], 'color': "lightyellow"},
{'range': [0.7, 1], 'color': "lightgreen"}
]
}
), row=1, col=2
)
features = list(input_data.keys())
values = list(input_data.values())
fig.add_trace(go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"), row=2, col=1)
fig.add_trace(
go.Scatter(
x=[0, 1], y=[probability, probability],
mode='lines+markers',
name="Probability",
line=dict(color="red", width=3),
marker=dict(size=10)
), row=2, col=2
)
fig.update_layout(
height=800,
showlegend=False,
title_text="Student Eligibility Prediction Dashboard",
title_x=0.5
)
return fig
except Exception as e:
return create_error_plot()
def batch_predict(file):
try:
if model is None or scaler is None:
return "Model not loaded. Please check if all model files are uploaded.", None
if file is None:
return "Please upload a CSV file.", None
df = pd.read_csv(file)
missing_features = set(feature_names) - set(df.columns)
if missing_features:
return f"Missing features: {missing_features}", None
df_features = df[feature_names]
df_scaled = scaler.transform(df_features)
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
probabilities = model.predict(df_reshaped).flatten()
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
results_df = df_features.copy()
results_df['Probability'] = probabilities
results_df['Prediction'] = predictions
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
output_file = "batch_predictions.csv"
results_df.to_csv(output_file, index=False)
eligible_count = predictions.count('Eligible')
not_eligible_count = predictions.count('Not Eligible')
summary = f"""Batch Prediction Summary:
βββββββββββββββββββββββββββββββββββββββββ
π Total predictions: {len(results_df)}
β
Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%)
β Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%)
π Average Probability: {np.mean(probabilities):.4f}
π― Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
βββββββββββββββββββββββββββββββββββββββββ
Results saved to: {output_file}
"""
return summary, output_file
except Exception as e:
return f"Error processing file: {str(e)}", None
# Gradio UI
demo = gr.Blocks(theme=gr.themes.Soft())
with demo:
gr.Markdown("# π Student Eligibility Prediction")
with gr.Tabs():
with gr.Tab("Single Prediction"):
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
predict_btn = gr.Button("Predict")
with gr.Row():
prediction = gr.Textbox(label="Prediction")
probability = gr.Textbox(label="Probability")
confidence = gr.Textbox(label="Confidence")
plot = gr.Plot()
predict_btn.click(predict_student_eligibility, inputs=inputs, outputs=[prediction, probability, confidence, plot])
with gr.Tab("Batch Prediction"):
file_input = gr.File(label="Upload CSV", file_types=[".csv"], type="filepath")
batch_btn = gr.Button("Process Batch")
batch_output = gr.Textbox(label="Results")
download = gr.File(label="Download")
batch_btn.click(batch_predict, inputs=file_input, outputs=[batch_output, download])
# Launch app
demo.launch()
|