File size: 8,236 Bytes
444ee18
 
 
 
 
 
f978017
444ee18
f978017
444ee18
 
8b11118
 
 
444ee18
 
 
8b11118
 
 
a915b02
f978017
444ee18
 
f978017
444ee18
 
f978017
444ee18
 
 
 
 
ed024cc
 
f978017
 
ed024cc
 
 
 
f978017
444ee18
 
 
ed024cc
 
f978017
444ee18
 
 
 
f978017
ed024cc
444ee18
f978017
444ee18
f978017
444ee18
f978017
444ee18
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
 
ed024cc
 
 
 
 
 
 
f978017
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
f978017
ed024cc
f978017
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f978017
ed024cc
f978017
ed024cc
 
f978017
 
ed024cc
 
f978017
ed024cc
f978017
ed024cc
 
f978017
ed024cc
f978017
ed024cc
 
 
 
 
 
f978017
ed024cc
 
 
444ee18
 
 
ed024cc
 
f978017
ed024cc
 
f978017
8b11118
444ee18
 
 
f978017
444ee18
 
 
f978017
444ee18
 
f978017
444ee18
 
 
 
f978017
444ee18
 
f978017
 
 
 
ed024cc
 
 
f978017
 
ed024cc
 
 
 
444ee18
f978017
444ee18
f978017
444ee18
 
 
f978017
 
 
 
8b11118
444ee18
8b11118
f978017
8b11118
444ee18
8b11118
 
 
 
f978017
 
8b11118
f978017
8b11118
 
 
f978017
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os

# Set environment variable to avoid oneDNN warnings
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

# Load model artifacts
def load_model_artifacts():
    try:
        with open('model_architecture.json', 'r') as json_file:
            model_json = json_file.read()
        model = model_from_json(model_json)
        model.load_weights('final_model.h5')

        with open('scaler.pkl', 'rb') as f:
            scaler = pickle.load(f)

        with open('metadata.json', 'r') as f:
            metadata = json.load(f)

        return model, scaler, metadata
    except Exception as e:
        raise Exception(f"Error loading model artifacts: {str(e)}")

# Initialize model components
try:
    model, scaler, metadata = load_model_artifacts()
    # Use only two features for prediction
    feature_names = ['Feature_1', 'Feature_2']
    print(f"βœ… Model loaded successfully with features: {feature_names}")
except Exception as e:
    print(f"❌ Error loading model: {e}")
    model, scaler, metadata = None, None, {}
    feature_names = ['Feature_1', 'Feature_2']

def predict_student_eligibility(*args):
    try:
        if model is None or scaler is None:
            return "Model not loaded", "N/A", "N/A", create_error_plot()

        input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
        input_df = pd.DataFrame([input_data])
        input_scaled = scaler.transform(input_df)
        input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)

        probability = float(model.predict(input_reshaped)[0][0])
        prediction = "Eligible" if probability > 0.5 else "Not Eligible"
        confidence = abs(probability - 0.5) * 2
        fig = create_prediction_viz(probability, prediction, input_data)

        return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig

    except Exception as e:
        return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()

def create_error_plot():
    fig = go.Figure()
    fig.add_annotation(
        text="Model not available or error occurred",
        xref="paper", yref="paper",
        x=0.5, y=0.5, xanchor='center', yanchor='middle',
        showarrow=False, font=dict(size=20)
    )
    fig.update_layout(
        xaxis={'visible': False},
        yaxis={'visible': False},
        height=400
    )
    return fig

def create_prediction_viz(probability, prediction, input_data):
    try:
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
            specs=[[{"type": "indicator"}, {"type": "indicator"}],
                   [{"type": "bar"}, {"type": "scatter"}]]
        )

        fig.add_trace(
            go.Indicator(
                mode="gauge+number",
                value=probability,
                title={'text': "Eligibility Probability"},
                gauge={
                    'axis': {'range': [None, 1]},
                    'bar': {'color': "darkblue"},
                    'steps': [
                        {'range': [0, 0.5], 'color': "lightcoral"},
                        {'range': [0.5, 1], 'color': "lightgreen"}
                    ],
                    'threshold': {
                        'line': {'color': "red", 'width': 4},
                        'thickness': 0.75,
                        'value': 0.5
                    }
                }
            ), row=1, col=1
        )

        confidence = abs(probability - 0.5) * 2
        fig.add_trace(
            go.Indicator(
                mode="gauge+number",
                value=confidence,
                title={'text': "Prediction Confidence"},
                gauge={
                    'axis': {'range': [None, 1]},
                    'bar': {'color': "orange"},
                    'steps': [
                        {'range': [0, 0.3], 'color': "lightcoral"},
                        {'range': [0.3, 0.7], 'color': "lightyellow"},
                        {'range': [0.7, 1], 'color': "lightgreen"}
                    ]
                }
            ), row=1, col=2
        )

        features = list(input_data.keys())
        values = list(input_data.values())
        fig.add_trace(go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"), row=2, col=1)

        fig.add_trace(
            go.Scatter(
                x=[0, 1], y=[probability, probability],
                mode='lines+markers',
                name="Probability",
                line=dict(color="red", width=3),
                marker=dict(size=10)
            ), row=2, col=2
        )

        fig.update_layout(
            height=800,
            showlegend=False,
            title_text="Student Eligibility Prediction Dashboard",
            title_x=0.5
        )

        return fig
    except Exception as e:
        return create_error_plot()

def batch_predict(file):
    try:
        if model is None or scaler is None:
            return "Model not loaded. Please check if all model files are uploaded.", None

        if file is None:
            return "Please upload a CSV file.", None

        df = pd.read_csv(file)
        missing_features = set(feature_names) - set(df.columns)
        if missing_features:
            return f"Missing features: {missing_features}", None

        df_features = df[feature_names]
        df_scaled = scaler.transform(df_features)
        df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)

        probabilities = model.predict(df_reshaped).flatten()
        predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]

        results_df = df_features.copy()
        results_df['Probability'] = probabilities
        results_df['Prediction'] = predictions
        results_df['Confidence'] = np.abs(probabilities - 0.5) * 2

        output_file = "batch_predictions.csv"
        results_df.to_csv(output_file, index=False)

        eligible_count = predictions.count('Eligible')
        not_eligible_count = predictions.count('Not Eligible')

        summary = f"""Batch Prediction Summary:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
πŸ“Š Total predictions: {len(results_df)}
βœ… Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%)
❌ Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%)
πŸ“ˆ Average Probability: {np.mean(probabilities):.4f}
🎯 Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Results saved to: {output_file}
        """

        return summary, output_file

    except Exception as e:
        return f"Error processing file: {str(e)}", None

# Gradio UI
demo = gr.Blocks(theme=gr.themes.Soft())

with demo:
    gr.Markdown("# πŸŽ“ Student Eligibility Prediction")
    with gr.Tabs():
        with gr.Tab("Single Prediction"):
            inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
            predict_btn = gr.Button("Predict")
            with gr.Row():
                prediction = gr.Textbox(label="Prediction")
                probability = gr.Textbox(label="Probability")
                confidence = gr.Textbox(label="Confidence")
            plot = gr.Plot()
            predict_btn.click(predict_student_eligibility, inputs=inputs, outputs=[prediction, probability, confidence, plot])

        with gr.Tab("Batch Prediction"):
            file_input = gr.File(label="Upload CSV", file_types=[".csv"], type="filepath")
            batch_btn = gr.Button("Process Batch")
            batch_output = gr.Textbox(label="Results")
            download = gr.File(label="Download")
            batch_btn.click(batch_predict, inputs=file_input, outputs=[batch_output, download])

# Launch app
demo.launch()