File size: 11,033 Bytes
444ee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import load_model
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import os

# Load model artifacts
@st.cache_resource
def load_model_artifacts():
    try:
        # Load the trained model
        model = load_model('final_model.h5')
        
        # Load the scaler
        with open('scaler.pkl', 'rb') as f:
            scaler = pickle.load(f)
        
        # Load metadata
        with open('metadata.json', 'r') as f:
            metadata = json.load(f)
            
        return model, scaler, metadata
    except Exception as e:
        raise Exception(f"Error loading model artifacts: {str(e)}")

# Initialize model components
model, scaler, metadata = load_model_artifacts()
feature_names = metadata['feature_names']

def predict_student_eligibility(*args):
    """
    Predict student eligibility based on input features
    """
    try:
        # Create input dictionary from gradio inputs
        input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
        
        # Convert to DataFrame
        input_df = pd.DataFrame([input_data])
        
        # Scale the input
        input_scaled = scaler.transform(input_df)
        
        # Reshape for CNN
        input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
        
        # Make prediction
        probability = model.predict(input_reshaped)[0][0]
        prediction = "Eligible" if probability > 0.5 else "Not Eligible"
        confidence = abs(probability - 0.5) * 2  # Convert to confidence score
        
        # Create prediction visualization
        fig = create_prediction_viz(probability, prediction, input_data)
        
        return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
        
    except Exception as e:
        return f"Error: {str(e)}", "N/A", "N/A", None

def create_prediction_viz(probability, prediction, input_data):
    """
    Create visualization for prediction results
    """
    # Create subplots
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Feature Distribution'),
        specs=[[{"type": "indicator"}, {"type": "indicator"}],
               [{"type": "bar"}, {"type": "histogram"}]]
    )
    
    # Prediction probability gauge
    fig.add_trace(
        go.Indicator(
            mode="gauge+number+delta",
            value=probability,
            domain={'x': [0, 1], 'y': [0, 1]},
            title={'text': "Eligibility Probability"},
            gauge={
                'axis': {'range': [None, 1]},
                'bar': {'color': "darkblue"},
                'steps': [
                    {'range': [0, 0.5], 'color': "lightgray"},
                    {'range': [0.5, 1], 'color': "lightgreen"}
                ],
                'threshold': {
                    'line': {'color': "red", 'width': 4},
                    'thickness': 0.75,
                    'value': 0.5
                }
            }
        ),
        row=1, col=1
    )
    
    # Confidence meter
    confidence = abs(probability - 0.5) * 2
    fig.add_trace(
        go.Indicator(
            mode="gauge+number",
            value=confidence,
            domain={'x': [0, 1], 'y': [0, 1]},
            title={'text': "Prediction Confidence"},
            gauge={
                'axis': {'range': [None, 1]},
                'bar': {'color': "orange"},
                'steps': [
                    {'range': [0, 0.3], 'color': "lightcoral"},
                    {'range': [0.3, 0.7], 'color': "lightyellow"},
                    {'range': [0.7, 1], 'color': "lightgreen"}
                ]
            }
        ),
        row=1, col=2
    )
    
    # Input features bar chart
    features = list(input_data.keys())
    values = list(input_data.values())
    
    fig.add_trace(
        go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
        row=2, col=1
    )
    
    # Feature distribution (example data)
    fig.add_trace(
        go.Histogram(x=values, nbinsx=10, name="Distribution", marker_color="lightcoral"),
        row=2, col=2
    )
    
    fig.update_layout(
        height=800,
        showlegend=False,
        title_text="Student Eligibility Prediction Dashboard",
        title_x=0.5
    )
    
    return fig

def create_model_info():
    """
    Create model information display
    """
    info_html = f"""
    <div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;">
        <h3>๐Ÿค– Model Information</h3>
        <ul>
            <li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li>
            <li><strong>Test Accuracy:</strong> {metadata['performance_metrics']['test_accuracy']:.4f}</li>
            <li><strong>AUC Score:</strong> {metadata['performance_metrics']['auc_score']:.4f}</li>
            <li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li>
            <li><strong>Features:</strong> {len(feature_names)} input features</li>
        </ul>
    </div>
    """
    return info_html

def batch_predict(file):
    """
    Batch prediction from uploaded CSV file
    """
    try:
        # Read the uploaded file
        df = pd.read_csv(file.name)
        
        # Check if all required features are present
        missing_features = set(feature_names) - set(df.columns)
        if missing_features:
            return f"Missing features: {missing_features}", None
        
        # Select only the required features
        df_features = df[feature_names]
        
        # Scale the features
        df_scaled = scaler.transform(df_features)
        
        # Reshape for CNN
        df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
        
        # Make predictions
        probabilities = model.predict(df_reshaped).flatten()
        predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
        
        # Create results dataframe
        results_df = df_features.copy()
        results_df['Probability'] = probabilities
        results_df['Prediction'] = predictions
        results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
        
        # Save results
        output_file = "batch_predictions.csv"
        results_df.to_csv(output_file, index=False)
        
        # Create summary statistics
        summary = f"""
        Batch Prediction Summary:
        - Total predictions: {len(results_df)}
        - Eligible: {sum(1 for p in predictions if p == 'Eligible')}
        - Not Eligible: {sum(1 for p in predictions if p == 'Not Eligible')}
        - Average Probability: {np.mean(probabilities):.4f}
        - Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
        """
        
        return summary, output_file
        
    except Exception as e:
        return f"Error processing file: {str(e)}", None

# Create Gradio interface
with gr.Blocks(
    theme=gr.themes.Soft(),
    title="Student Eligibility Prediction",
    css="""
    .gradio-container {
        max-width: 1200px !important;
    }
    .main-header {
        text-align: center;
        padding: 20px;
        background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
        color: white;
        border-radius: 10px;
        margin-bottom: 20px;
    }
    """
) as demo:
    
    # Header
    gr.HTML("""
    <div class="main-header">
        <h1>๐ŸŽ“ Student Eligibility Prediction System</h1>
        <p>AI-powered CNN model for predicting student eligibility with advanced analytics</p>
    </div>
    """)
    
    with gr.Tabs():
        # Single Prediction Tab
        with gr.TabItem("Single Prediction"):
            gr.Markdown("### Enter student information to predict eligibility")
            
            with gr.Row():
                with gr.Column(scale=1):
                    # Create input components dynamically based on features
                    inputs = []
                    for feature in feature_names:
                        inputs.append(
                            gr.Number(
                                label=f"{feature}",
                                value=85,  # Default value
                                minimum=0,
                                maximum=100,
                                step=1
                            )
                        )
                    
                    predict_btn = gr.Button("๐Ÿ”ฎ Predict Eligibility", variant="primary", size="lg")
                
                with gr.Column(scale=2):
                    with gr.Row():
                        prediction_output = gr.Textbox(label="Prediction", scale=1)
                        probability_output = gr.Textbox(label="Probability", scale=1)
                        confidence_output = gr.Textbox(label="Confidence", scale=1)
                    
                    prediction_plot = gr.Plot(label="Prediction Visualization")
            
            # Model information
            gr.HTML(create_model_info())
        
        # Batch Prediction Tab
        with gr.TabItem("Batch Prediction"):
            gr.Markdown("### Upload a CSV file for batch predictions")
            gr.Markdown(f"**Required columns:** {', '.join(feature_names)}")
            
            with gr.Row():
                with gr.Column():
                    file_input = gr.File(
                        label="Upload CSV File",
                        file_types=[".csv"],
                        type="file"
                    )
                    batch_predict_btn = gr.Button("๐Ÿ“Š Process Batch", variant="primary")
                
                with gr.Column():
                    batch_output = gr.Textbox(label="Batch Results Summary", lines=10)
                    download_file = gr.File(label="Download Results")
        
        # Model Analytics Tab
        with gr.TabItem("Model Analytics"):
            gr.Markdown("### Model Performance Metrics")
            
            # Performance metrics
            metrics_df = pd.DataFrame([metadata['performance_metrics']])
            gr.Dataframe(metrics_df, label="Performance Metrics")
            
            # Feature importance (placeholder - you'd need to calculate this)
            gr.Markdown("### Feature Names")
            gr.Textbox(value=", ".join(feature_names), label="Model Features", lines=3)
    
    # Event handlers
    predict_btn.click(
        fn=predict_student_eligibility,
        inputs=inputs,
        outputs=[prediction_output, probability_output, confidence_output, prediction_plot]
    )
    
    batch_predict_btn.click(
        fn=batch_predict,
        inputs=[file_input],
        outputs=[batch_output, download_file]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(share=True)