Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,13 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
from tensorflow import keras
|
6 |
-
from sklearn.preprocessing import StandardScaler
|
7 |
-
import pickle
|
8 |
|
9 |
-
# Load model and
|
10 |
-
model = keras.models.load_model('
|
11 |
with open('scaler.pkl', 'rb') as f:
|
12 |
scaler = pickle.load(f)
|
13 |
-
with open('label_encoder.pkl', 'rb') as f:
|
14 |
-
label_encoder = pickle.load(f)
|
15 |
|
16 |
def predict_eligibility(theory_score, practice_score):
|
17 |
"""Predicts eligibility given theory and practice scores."""
|
@@ -26,7 +24,7 @@ def predict_eligibility(theory_score, practice_score):
|
|
26 |
# Predict
|
27 |
proba = model.predict(scaled_input, verbose=0)[0][0]
|
28 |
prediction = int(proba > 0.5)
|
29 |
-
class_name =
|
30 |
|
31 |
# Confidence score
|
32 |
confidence = proba if prediction else (1 - proba)
|
@@ -35,7 +33,7 @@ def predict_eligibility(theory_score, practice_score):
|
|
35 |
return (
|
36 |
class_name, # First output: Prediction label
|
37 |
f"{confidence * 100:.2f}%", # Second output: Confidence
|
38 |
-
"
|
39 |
)
|
40 |
|
41 |
except Exception as e:
|
@@ -51,7 +49,7 @@ demo = gr.Interface(
|
|
51 |
gr.Slider(0, 30, value=0, step=1, label="Practice Score")
|
52 |
],
|
53 |
outputs=[
|
54 |
-
gr.Textbox(label="Prediction"),
|
55 |
gr.Textbox(label="Confidence"),
|
56 |
gr.Textbox(label="Eligibility Status")
|
57 |
],
|
|
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
from tensorflow import keras
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
import pickle
|
8 |
|
9 |
+
# Load model and scaler (replace paths if needed)
|
10 |
+
model = keras.models.load_model('eligibility_predictor.h5') # Changed to match your saved model name
|
11 |
with open('scaler.pkl', 'rb') as f:
|
12 |
scaler = pickle.load(f)
|
|
|
|
|
13 |
|
14 |
def predict_eligibility(theory_score, practice_score):
|
15 |
"""Predicts eligibility given theory and practice scores."""
|
|
|
24 |
# Predict
|
25 |
proba = model.predict(scaled_input, verbose=0)[0][0]
|
26 |
prediction = int(proba > 0.5)
|
27 |
+
class_name = "Eligible" if prediction else "Not eligible"
|
28 |
|
29 |
# Confidence score
|
30 |
confidence = proba if prediction else (1 - proba)
|
|
|
33 |
return (
|
34 |
class_name, # First output: Prediction label
|
35 |
f"{confidence * 100:.2f}%", # Second output: Confidence
|
36 |
+
"β
Yes" if prediction else "β No" # Third output: Eligibility status
|
37 |
)
|
38 |
|
39 |
except Exception as e:
|
|
|
49 |
gr.Slider(0, 30, value=0, step=1, label="Practice Score")
|
50 |
],
|
51 |
outputs=[
|
52 |
+
gr.Textbox(label="Prediction"),
|
53 |
gr.Textbox(label="Confidence"),
|
54 |
gr.Textbox(label="Eligibility Status")
|
55 |
],
|