Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
from typing import Union, Tuple | |
from PIL import Image | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cuda") | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def fn(image: Union[Image.Image, str]) -> Tuple[Image.Image, Image.Image]: | |
""" | |
Remove the background from an image and return both the transparent version and the original. | |
This function performs background removal using a BiRefNet segmentation model. It is intended for use | |
with image input (either uploaded or from a URL). The function returns a transparent PNG version of the image | |
with the background removed, along with the original RGB version for comparison. | |
Args: | |
image (PIL.Image or str): The input image, either as a PIL object or a filepath/URL string. | |
Returns: | |
tuple: | |
- processed_image (PIL.Image): The input image with the background removed and transparency applied. | |
- origin (PIL.Image): The original RGB image, unchanged. | |
""" | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
origin = im.copy() | |
processed_image = process(im) | |
return (processed_image, origin) | |
def process(image: Image.Image) -> Image.Image: | |
""" | |
Apply BiRefNet-based image segmentation to remove the background. | |
This function preprocesses the input image, runs it through a BiRefNet segmentation model to obtain a mask, | |
and applies the mask as an alpha (transparency) channel to the original image. | |
Args: | |
image (PIL.Image): The input RGB image. | |
Returns: | |
PIL.Image: The image with the background removed, using the segmentation mask as transparency. | |
""" | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cuda") | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return image | |
def process_file(f: str) -> str: | |
""" | |
Load an image file from disk, remove the background, and save the output as a transparent PNG. | |
Args: | |
f (str): Filepath of the image to process. | |
Returns: | |
str: Path to the saved PNG image with background removed. | |
""" | |
name_path = f.rsplit(".", 1)[0] + ".png" | |
im = load_img(f, output_type="pil") | |
im = im.convert("RGB") | |
transparent = process(im) | |
transparent.save(name_path) | |
return name_path | |
slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png") | |
slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png") | |
image_upload = gr.Image(label="Upload an image") | |
image_file_upload = gr.Image(label="Upload an image", type="filepath") | |
url_input = gr.Textbox(label="Paste an image URL") | |
output_file = gr.File(label="Output PNG File") | |
# Example images | |
chameleon = load_img("butterfly.jpg", output_type="pil") | |
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" | |
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image") | |
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text") | |
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png") | |
demo = gr.TabbedInterface( | |
[tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool" | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True, mcp_server=True) |