not-lain's picture
Update app.py
9bb32c5 verified
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
from typing import Union, Tuple
from PIL import Image
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def fn(image: Union[Image.Image, str]) -> Tuple[Image.Image, Image.Image]:
"""
Remove the background from an image and return both the transparent version and the original.
This function performs background removal using a BiRefNet segmentation model. It is intended for use
with image input (either uploaded or from a URL). The function returns a transparent PNG version of the image
with the background removed, along with the original RGB version for comparison.
Args:
image (PIL.Image or str): The input image, either as a PIL object or a filepath/URL string.
Returns:
tuple:
- processed_image (PIL.Image): The input image with the background removed and transparency applied.
- origin (PIL.Image): The original RGB image, unchanged.
"""
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
processed_image = process(im)
return (processed_image, origin)
@spaces.GPU
def process(image: Image.Image) -> Image.Image:
"""
Apply BiRefNet-based image segmentation to remove the background.
This function preprocesses the input image, runs it through a BiRefNet segmentation model to obtain a mask,
and applies the mask as an alpha (transparency) channel to the original image.
Args:
image (PIL.Image): The input RGB image.
Returns:
PIL.Image: The image with the background removed, using the segmentation mask as transparency.
"""
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def process_file(f: str) -> str:
"""
Load an image file from disk, remove the background, and save the output as a transparent PNG.
Args:
f (str): Filepath of the image to process.
Returns:
str: Path to the saved PNG image with background removed.
"""
name_path = f.rsplit(".", 1)[0] + ".png"
im = load_img(f, output_type="pil")
im = im.convert("RGB")
transparent = process(im)
transparent.save(name_path)
return name_path
slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png")
slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png")
image_upload = gr.Image(label="Upload an image")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
url_input = gr.Textbox(label="Paste an image URL")
output_file = gr.File(label="Output PNG File")
# Example images
chameleon = load_img("butterfly.jpg", output_type="pil")
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")
demo = gr.TabbedInterface(
[tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
)
if __name__ == "__main__":
demo.launch(show_error=True, mcp_server=True)